Application of machine learning in predicting construction project profit in Ghana using Support Vector Regression Algorithm (SVRA)

Show simple item record

dc.contributor.author Adinyira, E.
dc.contributor.author Adjei, E. A. G.
dc.contributor.author Agyekum, K.
dc.contributor.author Fugar, F. D. K.
dc.date.accessioned 2022-08-22T15:24:09Z
dc.date.available 2022-08-22T15:24:09Z
dc.date.issued 2021
dc.identifier.issn 9699988
dc.identifier.other 10.1108/ECAM-08-2020-0618
dc.identifier.uri http://atuspace.atu.edu.gh:8080/handle/123456789/118
dc.description.abstract Purpose: Knowledge of the effect of various cash-flow factors on expected project profit is important to effectively manage productivity on construction pwas conducted to develop and test the sensitivity of a Machine Learning Support Vector Regression Algorithm (SVRA) to predict construction project profit in Ghana. Design/methodology/approach: The study relied on data from 150 institutional projects executed within the past five years (2014–2018) in developing the model. Eighty percent (80%) of the data from the 150 projects was used at hyperparameter selection and final training phases of the model development and the remaining 20% for model testing. Using MATLAB for Support Vector Regression, the parameters available for tuning were the epsilon values, the kernel scale, the box constraint and standardisations. The sensitivity index was computed to determine the degree to which the independent variables impact the dependent variable. Findings: The developed model's predictions perfectly fitted the data and explained all the variability of the response data around its mean. Average predictive accuracy of 73.66% was achieved with all the variables on the different projects in validation. The developed SVR model was sensitive to labour and loan. Originality/value: The developed SVRA combines variation, defective works and labour with other financial constraints, which have been the variables used in previous studies. It will aid contractors in predicting profit on completion at commencement and also provide information on the effect of changes to cash-flow factors on profit. en_US
dc.language.iso en en_US
dc.publisher Emerald Group Holdings Ltd. en_US
dc.relation.ispartofseries vol;28
dc.subject Cash flow en_US
dc.subject Construction project en_US
dc.subject Machine learning en_US
dc.subject Productivity en_US
dc.subject Profit en_US
dc.subject Support vector regression en_US
dc.title Application of machine learning in predicting construction project profit in Ghana using Support Vector Regression Algorithm (SVRA) en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account