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,e generalised Pareto distribution (GPD) offers a family of probability spaces which support threshold exceedances and is thus
suitable for modelling high-end actuarial risks. Nonetheless, its distributional continuity presents a critical limitation in characterising
data of discrete forms. Discretising the GPD, therefore, yields a derived distribution which accommodates the count data while
maintaining the essential tail modelling properties of the GPD. In this paper, we model non-life insurance claims under the three-
parameter discrete generalised Pareto (DGP) distribution. Data for the study on reported and settled claims, spanning the period
2012–2016, were obtained from the National Insurance Commission, Ghana. ,e maximum likelihood estimation (MLE) principle
was adopted in fitting theDGP to yearly and aggregated data.,e estimation involved two steps. First, we propose amodification to the
μ and (μ + 1) frequency method in the literature. ,e proposal provides an alternative routine for generating initial estimators for
MLE, in cases of varied count intervals, as is a characteristic of the claim data under study. Second, a bootstrap algorithm is
implemented to obtain standard errors of estimators of the DGP parameters.,e performance of the DGP is compared to the negative
binomial distribution inmodelling the claim data using the Akaike and Bayesian information criteria.,e results show that the DGP is
appropriate for modelling the count of non-life insurance claims and provides a better fit to the regulatory claim data considered.

1. Introduction

Non-life or general insurance involves the provision of fi-
nancial loss protection against risks on interests other than
life, such as buildings, vehicles, machinery, and equipment.
Conditioned on periodic payments or one-off advance of a
predetermined amount, called premium, non-life policies are
designed to provide coverage against the occurrence of the
insured probabilistic events for individuals, private organi-
sations, and public institutions. ,e payments effected in
response to occurrences of such events are termed as in-
surance claims (Wuthrich [1]). ,e non-life insurance claim
process is characterised by two quantities: claim frequency or
count and claim severity or size. As noted by Renshaw [2] and
Özgürel [3], the underlying expectations of claim frequency
and severity, quantified as a product, are foremost consid-
erations in the computation of pure or risk premiums.

,e main objective of this paper is to illustrate that the
discrete generalised Pareto (DGP) distribution can be
employed to model the counts of non-life insurance claims,
collated by an insurance regulatory authority from a licensed
class of insurers. In the absence of suitable actuarial models,
non-life insurers largely encounter difficulties in conducting
evidence-based assessment of risks insured, often resulting in
themiscomputation of premiums and inability to settle claims
when due. In response, developing probability models that
describe claim frequencies offers a distributional framework
for evaluating risks to facilitate premium setting and liquidity
reserving by non-life insurance service providers.

A random variable X that follows a DGP with shape (α),
scale (λ), and location (μ) parameters is denoted by
X ∼ DGP(α, λ, μ). ,is is a parametric model obtained by
discretising the continuous generalised Pareto distribution,
introduced by Pickands [4], and is particularly noted for tail
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modelling properties. ,e DGP assumes varying forms
based on the omission of one or two of its parameters. For
instance, if the location parameter μ � 0, the DGP trans-
forms into the discrete Lomax distribution, DLo(α, λ).

A fair amount of research has demonstrated the appli-
cation of probability models to the study of non-life insurance
claims. Among the relevant literature, selected studies have
principally explored the subject with reference to standard
probability distributions from the outlook of randomised
spatial effects (Gschlößl and Czado [5]), collective risk sim-
ulation (Pacáková [6]), and incorporation of covariates
(Renshaw [2]). In this paper, we attempt to contribute to
bridging the research gap by providing a method of fitting the
DGP to the non-life claims data from the National Insurance
Commission in Ghana. Furthermore, similar to the work of
Prieto et al. [7], we assess the performance of the DGP by
comparing it with the negative binomial distribution.

,is study contributes to the field of claims modelling in
threefold. First, it proposes a count-based data structure for
the analysis of non-life insurance claim frequencies to en-
hance the precision of statistical models. Second, a modi-
fication is made to the μ and μ + 1 frequency method of
Prieto et al. [7], to obtain initial estimators of the DGP for
the claims data characterised by varying discrete observa-
tional intervals.,ird, the algorithm implemented under the
estimation of the parameters of the DGP offers a resource to
researchers on performance analysis in future statistical and/
or actuarial work.

,e rest of this paper is organised as follows. In Section 2,
the methodology is presented including the maximum
likelihood estimation of the parameters of the distributions
and model selection criteria. Section 3 presents the data and
the arrangements needed to put the data into a form nec-
essary for the model fitting. Lastly, in Section 4, we present
concluding remarks.

2. Methodology

,is section presents the systematic approach followed to
model the reported and settled claim datasets. Specifically,
the section entails the description of the probability dis-
tributions, parameter estimation, and model selection
criteria.

,e parameter estimation method, maximum likelihood
estimation (MLE) technique, is used in fitting the models.
Consider the case where a random variable is available from a
population with a known probability distribution except for its
parameter θ ∈ Rd.,emaximum likelihood principle suggests
that the criterion for making the selection should be the
probability (or likelihood) with which a particular distribution
can produce the given sample. ,e value of θ for that distri-
bution is the maximum likelihood estimate of the unknown
parameter, θ.

Suppose x � x1, x2, . . . , xn􏼈 􏼉′ is an independent random
sample of size n from a distribution with dependence on one
or more unknown parameters θ � θ1, θ2, . . . , θd􏼈 􏼉′. Let
f(xi; θ) be the probability density (or mass) function of xi,
with θ restricted to a given parameter space Ω ∈ Rd. ,e
likelihood function of the sample is given by

L(θ; x) � 􏽙
n

i�1
f xi( 􏼁. (1)

,e maximum likelihood estimator, 􏽢θ, of θ is the so-
lution to the equation

z

zθ
L(θ; x) � 0. (2)

Usually, L(θ; x) may involve exponentials, and hence,
ln L(θ; x) is maximised. Since the logarithm of a function
increases or decreases with the function, the maximiser of
L(θ; x) also maximises ln L(θ; x).

2.1.NegativeBinomialDistribution. ,enegative binomial is
a discrete probability distribution which characterises the
number of successes in a sequence of independent and
identically distributed Bernoulli trials before a specified
number of failures (denoted r) occur. Suppose a sequence of
Bernoulli trials is observed. By definition, a turn of each trial
yields two possible outcomes, success or failure, with re-
spective probabilities of occurrence denoted by p and 1 − p.
Also, the trials are independent, and p remains constant for
each trial. If X represents the number of trials, or failures,
prior to the r-th success, then X follows a negative binomial
distribution with probability mass function:

P(X � x) �
x − 1

r − 1
􏼠 􏼡(1 − p)

x− r
p

r
,

forx � r, r + 1, r + 2, . . . .

(3)

,e geometric distribution is a special case of the neg-
ative binomial, where the Bernoulli trial discontinues at the
first failure, r � 1. Since the negative binomial may be
represented by alternative distributional parametrisations,
three factors inform distinctions: starting point of the
support, whether at x � 0 or x � r; definition of p, whether it
represents the probability of success or failure; and inter-
pretation of r, whether it denotes the number of successes or
failures (DeGroot and Schervish [8]).

Given N independent and identically distributed claim
count observations, (k1, . . . , kN), the likelihood function can
be expressed as

L(r, p) � 􏽙
N

i�1
P X � ki; r, p( 􏼁. (4)

Substituting (3) into (4) and taking the logarithm results
in the log-likelihood function given by

ℓ(r, p) � 􏽘
N

i�1
ln Γ ki + o|or( 􏼁( 􏼁 − 􏽘

N

i�1
ln ki!( 􏼁 − N ln(Γ(r))

+ 􏽘
N

i�1
ki ln(p) + Nr ln(1 − p).

(5)

To maximise equation (5), the partial derivative with
respect to r and p is set to zero:
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zl(r, p)

zp
� 􏽘

N

i�1
ki

1
p

⎡⎣ ⎤⎦ − Nr
1

1 − p
� 0, (6)

zl(r, p)

zr
� 􏽘

N

i�1
ψ ki + r( 􏼁⎡⎣ ⎤⎦ − Nψ(r) + N ln(1 − p) � 0. (7)

Here, the digamma function ψ(k) � Γ′(k)/Γ(k). Fur-
thermore, solving for p in equation (4) produces

􏽢p �
􏽐

N
i�1 ki

Nr + 􏽐
N
i�1 ki

. (8)

Finally, substituting p in (7) yields

zl(r, p)

zr
� 􏽘

N

i�1
ψ ki + r( 􏼁⎡⎣ ⎤⎦ − Nψ(r) + N ln

r

r + 􏽐
N
i�1 ki/N

􏼠 􏼡 � 0.

(9)

,e form of (9) suggests that a closed-form solution for r

may not be obtained analytically. ,erefore, numerical
methods can be used in order to obtain estimators of r and p.
We adopt an alternative appealing reparametrisation,
X ∼ NegativeBinomial(r, m/(m + r)), where m and r rep-
resent the mean and dispersion (or shape) parameters, re-
spectively (see, e.g., Piegorsch [9]). For example, in R Core
Team [10], the function fitdistr in the MASS package pro-
vides a routine for estimating the parameters of the negative
binomial distribution with reference to the alternative
reparametrisation.

2.2.DiscreteGeneralisedParetoDistribution. ,eDGP arises
from a discretisation of the continuous generalised Pareto
distribution. To provide a basis for the discussion on the
discrete generalised Pareto, the distribution functions of
Pareto type I and generalised Pareto are given as

D(x) � 1 −
b

x
􏼠 􏼡

a

, x≥ b, (10)

G(x) � 1 − 1 +
α(x − μ)

λ
􏼢 􏼣

(− 1/α)

,

1 + α(x − μ)/λ> 0, x> μ, λ> 0,

(11)

respectively. ,e generalised Pareto distribution is noted for
its ability to model tails of distribution functions (see, e.g.,
[11, 12]). Upon discretisation of the generalised Pareto
distribution, the resultant DGP inherits the prior continuous
properties in forms adapted to the discrete probability space.

From the stated generalised Pareto distribution in (11),
the probability mass function of the DGP can be formally
deduced. First, consider the cumulative distribution func-
tion of the DGP expressed as

F(x) � P(X≤x) � 1 − [1 + λ(x − μ + 1)]
− α

,

x � μ, μ + 1, . . . ,
(12)

where α, λ, μ> 0 and F(x) � 0 if x< μ.
Also, Krishna and Pundir [13] addressed the dis-

cretisation of a continuous model by observing unit
groupings on the failure time axis. ,e authors reasoned
that, for a continuous failure time X, with survival function
S(x) � P[X> x] and time groupings of intervals dX � ⌊X⌋,
the discrete observed variable, dX, would have the proba-
bility mass function

P(dX � x) � P(x≤X<x + 1) � S(x) − S(x + 1),

x � 0, 1, 2, . . . .

(13)
Next, consider a standard generalisation for the survival

function from Xekalaki [14]:

S(x) � P(X≥ x) � 1 − F(x − 1). (14)

,en, employing equations (12) and (14), the survival
function of the DGP is given:

S(x) � [1 + λ(x − μ)]
− α

, x � μ, μ + 1, . . . . (15)

Finally, evaluating equations (13) and (15) simulta-
neously results in the DGP

f(x) � [1 + λ(x − μ)]
− α

− [1 + λ(x − μ + 1)]
− α

,

x � μ, μ + 1, . . . .
(16)

Suppose x1, . . . , xn is a sample of size n from a DGP.,e
parameters α and λ are estimated on the assumption that μ is
known since 􏽢μ � xmin ≤xi,∀i. Adopting the μ and (μ + 1)

frequency method of Prieto et al. [7], the initial values
(α0, λ0, μ0) can be obtained and used as seed estimators in
the subsequent maximum likelihood operation. ,us, the
relative frequencies of x � μ and x � (μ + 1), respectively,
denoted by 􏽢fμ and 􏽢fμ+1, are calculated from the sample data.
Analogously, α and λ are determined by substituting x � μ
and x � (μ + 1) into the DGP probability mass function in
(16) and equating the expressions to their respective 􏽢fμ and
􏽢fμ+1 values.

However, the μ and (μ + 1) frequency method assumes
that the count data used are observed in increasing steps of 1.
However, in real-life situations, such as the data presented in
Section 3.1, theymay exhibit variation of intervals other than
1. ,erefore, applying the method strictly on the count data
results in generating several μ + 1 � 0 and hence leading to
􏽢fμ+1 � 0.

In this regard, proceeding with the computations with
zero relative frequencies will result in a loss of essential
frequency information in the dataset. As a result, we provide
a modification of the method as μ and (μ + ϵ) frequency
methods, where ϵ> 0 and (μ + ϵ) is the smallest observation
larger than the minimum, μ. ,erefore, the estimators of α
and λ are obtained by solving the resulting expressions,

􏽢fμ � 1 − [1 + λ]
− α

, (17)

and
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􏽢fμ+ε � [1 + λ]
− α

− [1 + 2λ]
− α

, (18)

simultaneously. ,e expression in (19) results after α is
eliminated from equations (17) and (18):

ln(1 + 2l)

ln(1 + l)
�
ln 1 − 􏽢fµ − 􏽢fµ+ε􏼐 􏼑

ln 1 − 􏽢fµ􏼐 􏼑
. (19)

Following from this, (20) is obtained by appropriate
substitutions into (19):

􏽢α � −
ln 1 − 􏽢fμ􏼐 􏼑

ln(1 + 􏽢λ)
. (20)

Next, the maximum likelihood estimation method is
employed to obtain estimators of the parameters of the
discrete generalised Pareto. ,e log-likelihood function is
constructed as

ln ℓ(λ, α) � 􏽘
n

i�1
lnf xi( 􏼁

� 􏽘

n

i�1
ln 1 + λ xi − μ( 􏼁( 􏼁

− α
− 1 + λ xi − μ + 1( 􏼁( 􏼁

− α
􏼂 􏼃,

(21)

where f(xi) refers to the probability mass function specified
in (16). Partial derivatives of (21) are taken with respect to α
and λ and set to zero to obtain normal equations:

z ln ℓ
zα

� 􏽘
n

i�1

ln 1 + λ xi − μ + 1( 􏼁􏼂 􏼃

1 + λ xi − μ + 1( 􏼁􏼂 􏼃
α 1 + λ xi − μ( 􏼁􏼂 􏼃

− α
− 1

− 􏽘
n

i�1

ln 1 + λ xi − μ( 􏼁􏼂 􏼃

1 − 1 + λ xi − μ( 􏼁􏼂 􏼃
α 1 + λ xi − μ + 1( 􏼁􏼂 􏼃

− α � 0,

z ln ℓ
zλ

� 􏽘
n

i�1

α xi − μ + 1( 􏼁

1 + λ xi − μ + 1( 􏼁􏼂 􏼃
α+1 1 + λ xi − μ( 􏼁􏼂 􏼃

− α
− 1 + λ xi − μ + 1( 􏼁􏼂 􏼃

(22)

− 􏽘
n

i�1

α xi − μ( 􏼁

1 + λ xi − μ( 􏼁􏼂 􏼃 − 1 + λ xi − μ( 􏼁􏼂 􏼃
α+1 1 + λ xi − μ + 1( 􏼁􏼂 􏼃

− α � 0. (23)

To proceed with the estimation of the parameters of the
DGP, an algorithm was implemented in R to perform the
following operations:

A1. Specify log-likelihood function (21) based on
DGP probability mass function (16). ,e log-likeli-
hood function is set to return a negation of the log-
likelihood value since the R optim function is a
minimiser. In effect, minimising the negated log-
likelihood function at the initial estimates produces
the equivalent of maximising the log-likelihood
function.
A2. Optimise the log-likelihood functions in (22) and
(23) at the seed values by simulated annealing (SANN),
a variant of the Bélisle [15] technique.
A3. Extract the estimated parameters, α and λ, from the
output generated in A2, and compute the standard
errors of the estimators using bootstrap resampling of
Efron and Tibshirani [16].

2.3. Model Selection Criteria. ,e Akaike [17] and Schwarz
[18] information criteria, denoted by AIC and BIC, re-
spectively, form the basis for selecting the suitable model.
,e AIC and BIC are stated as follows:

AIC � − 2 ln L + 2d,

BIC � − 2 ln L + d ln(n).
(24)

While d and n represent the number of parameters and
size of the sample, respectively, ln L specifies the log-

likelihood of the model evaluated at the maximum likeli-
hood estimates. ,us, L is the maximum value of the
likelihood function associated with the model.

In comparison with AIC, BIC addresses the issue of
overfitting with a factor, ln(n), thereby placing a higher
penalty for model complexity (Dziak et al. [19]). In statistical
decision-making, a candidate model with minimum AIC
and/or BIC values is selected.

3. Data and Model Fitting

3.1. Data. ,e study employs secondary data on non-life
claims from the National Insurance Commission (NIC) of
Ghana for the five-year period, 2012 to 2016. ,e historical
data cover insurance claims of 29 non-life service pro-
viders. For each fiscal year, the dataset indicates the total
number of claims administered under each of the five
business classes of non-life insurance in Ghana. ,e classes
are Fire, Burglary, and Property Damage; Accident; Marine
and Aviation; Motor; and General Liability. ,e claim data
are organised into three categories: incurred but not re-
ported (IBNR), reported but not settled (RBNS), and settled
but outstanding (SEBO), each bearing the standard actu-
arial definitions.

However, since IBNR is necessarily an estimate, the
study focuses on RBNS and SEBO, hereinafter referred to as
reported and settled claims, respectively. Overall, the data
consist of 3,878,355 non-life insurance policies, generating
39,563 reported claims, of which 5,210 claims were settled
within the period.
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Figure 1 provides an overview of the annual aggregates
for policy subscriptions, reported claims, and settled claims.
Although policy subscriptions have seen a decrease from
2014 onwards, the number of reported and settled claims has
been increasing within the period. ,is observation shows
some evidence of potential liquidity challenges for the non-
life insurers if the trend persists into the future.

Following Prieto et al. [7], the dataset is organised into a
structure which enables the fit of the discrete distributions
to the frequency of occurrence of reported and settled
claims. Tables 1 and 2 present descriptive statistics on the
reported and settled claim datasets, respectively. For each
year of the period considered, the skewness indicates the
extent of symmetry and shows that there is positive
skewness for the distribution of the count of claims. Also,
among the reported claims, the fiscal year 2016 recorded
some unusually large values culminating in its large kur-
tosis value. Similar results can be found in 2013 for the
settled claim data.

In addition, Tables 3 and 4 record the individual ob-
servations of reported and settled claim counts with cor-
responding frequencies. For instance, in 2012, there were
two records of reported claim count of 19 and six records of
cases where no claims were settled.

It should be noted that the respective columns for the
count frequencies for both reported and settled claims sum
up to 29. ,us, each of them tallies with the total number of
non-life insurers from whom records are collated by the
National Insurance Commission. Lastly, nonsettlement of
reported claims, among other reasons, may result from the
eligibility of reported interest, proximity of the cause of the
insured event, and noncompliance with coverage provisions
of the insurance policy.

3.2. Model Fitting and Discussion of Results. ,is section
presents the outcomes of the model fitting methods dis-
cussed in Section 2 on the claim data from the preceding
section.

,e parameter estimates are obtained through the
maximum likelihood method. ,e maximum likelihood
estimation of the negative binomial and DGP parameters is
performed in R. ,e negative binomial parameters are

estimated using the mle function and their standard argu-
ments in the fitdistrplus package. However, to the best of the
authors’ knowledge, no statistical package exists for esti-
mating the parameters of the DGP in R. ,erefore, the
authors wrote an R-function for estimating the parameters
of the DGP, using algorithms A1–A3, and it is available upon
request. In addition, the selection criteria for model
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Figure 1: Claim data: number of non-life policies, reported claims, and settled claims recorded in the period 2012–2016.

Table 1: Descriptive statistics of reported claims.

Year Mean Std. dev. Skewness Kurtosis Min Max
2012 255.86 329.95 1.28 0.71 0 1187
2013 414.9 620.11 1.58 1.12 0 2053
2014 281.9 350.03 1.57 1.47 0 1335
2015 341.72 503.77 2.12 4.07 0 2151
2016 676.59 1839.98 4.34 18.81 2 9902

Table 2: Descriptive statistics of settled claims.

Year Mean Std. dev. Skewness Kurtosis Min Max
2012 79.21 123.42 1.85 2.34 0 452
2013 46.24 63.22 2.52 7.35 0 307
2014 54.03 65.38 2.24 5.42 0 307
2015 64.31 90.59 1.93 3.03 0 362
2016 73.38 106.75 2.19 4.44 2 452

Table 3: Restructured frequency of reported claims.

Number of reported claims
Frequency of counts by year

2012 2013 2014 2015 2016
0 6 5 4 4 3
2 0 0 0 0 2
5 0 1 0 0 0
10 1 0 0 0 0
19 2 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1520 0 0 0 1 0
1533 0 1 0 0 0
2053 0 2 0 0 0
2151 0 0 0 1 1
9902 0 0 0 0 1
Total 29 29 29 29 29
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comparison are presented for the individual years and the
aggregated claim data for the five-year period.

3.2.1. Parameter Estimation for Yearly Data. Table 5 shows
the parameters of the negative binomial distribution esti-
mated using the alternative reparametrisation in Piegorsch
[9]. ,e standard errors are placed in parenthesis.

Also, Table 6 presents estimates from the estimators, 􏽢μ, 􏽢α,
and 􏽢λ, representing the estimated DGP location, shape, and
scale parameters, respectively. ,e bootstrap standard errors
are placed in parenthesis.

In terms of reported claims’ count, Tables 7 and 8
show that the DGP model presents smaller AIC and BIC

values, in comparison with the negative binomial model.
,e observation is consistent across the fiscal timeframe
under consideration. In addition, for the settled claim
counts, the DGP is preferred as it exhibits smaller AIC
and BIC values throughout the period as shown in Ta-
bles 7 and 8. ,erefore, the DGP is recommended as it
provides a better fit to both classes of the non-life in-
surance claim data.

3.2.2. Parameter Estimation for Aggregated Data. ,is
section presents the results of fitting the negative binomial
and DGP to the aggregated 5-year count data on reported
and settled claims. ,e results of the parameter estimation

Table 4: Restructured frequency of settled claims.

Number of settled claims
Frequency of counts by year

2012 2013 2014 2015 2016
0 6 5 4 4 3
1 1 1 0 0 0
2 0 1 0 1 2
3 1 0 0 0 0
7 1 0 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
180 1 0 0 0 1
307 0 1 1 1 0
362 1 0 0 1 1
392 1 0 0 0 0
452 1 0 0 0 1
Total 29 29 29 29 29

Table 5: Parameter estimates from the negative binomial.

Variable Estimator 2012 2013 2014 2015 2016

Reported claims

􏽢r 0.4915 0.6874 1.0370 0.8603 0.4518
s.e (0.1234) (0.1661) (0.2605) (0.2121) (0.1052)
􏽢m 296.8624 542.4572 327.0975 396.9273 783.7698
s.e (84.7788) (130.9043) (64.3623) (85.7927) (233.2420)

Settled claims

􏽢r 0.4225 0.6735 1.1312 0.7453 0.7815
s.e (0.1063) (0.1764) (0.3002) (0.1878) (0.1912)
􏽢m 88.3519 51.5716 60.2751 71.7227 81.8596
s.e (26.7214) (12.4032) (11.2194) (16.3761) (18.2495)

Table 6: Parameter estimates from DGP.

Variable Estimator 2012 2013 2014 2015 2016

Reported claims

􏽢μ 7.3983 4.8507 5.8075 6.2320 2.2437
s.e (3.4175) (3.9254) (3.8876) (5.6555) (2.2000)
􏽢α 0.0128 0.0044 0.0020 0.0013 0.0102
s.e (0.0104) (0.0011) (0.0019) (0.0010) (0.0017)
􏽢λ 3.3700 2.7590 2.8036 2.4566 4.9025
s.e (0.1318) (0.8976) (0.0106) (0.0829) (2.3947)

Settled claims

􏽢μ 3.5866 3.3776 4.6485 3.6443 3.0205
s.e (1.0333) (0.1015) (3.4941) (0.6387) (2.5885)
􏽢α 3.4157 2.9258 2.0675 2.3356 0.1121
s.e (0.0532) (0.0200) (0.0235) (0.0064) (0.0311)
􏽢λ 3.4015 9.4855 3.1532 3.1127 2.8593
s.e (0.9538) (3.0089) (0.2831) (1.5265) (0.9741)
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for the negative binomial and DGP are presented in Tables 9
and 10, respectively.

Comparing the negative binomial and DGP, Table 11
shows the AIC and BIC values for the fit of the two
probability distributions. It is obvious that the DGP model
produces smaller AIC and BIC values for the aggregate
reported claim counts. Also, regarding the aggregate settled
claim counts, smaller AIC and BIC values are produced by
the DGP. ,erefore, in alignment with the year-based
modelling conclusion, the DGP is recommended as it
provides a better fit to both classes of yearly and the ag-
gregated non-life insurance claims data.

4. Conclusion

,is study demonstrates that non-life insurance claims can
be described by the three-parameter discrete generalised
Pareto distribution. Relative to the negative binomial model,
the DGP was observed to provide a better fit to the non-life
reported and settled claim counts, as evident from the in-
formation criterion values under both yearly and aggregated
data scenarios.

First, in organising the regulatory claim data for the
distributional investigation, the study disaggregated each
dataset into the observed count of claims and the corre-
sponding frequencies, thereby providing an explicit count-
frequency breakdown for informed probabilistic modelling.
Furthermore, in deriving initial estimators (α0, λ0, and μ0) to
evaluate the DGP parameters, the μ and (μ + 1) frequencies
of Prieto et al. [7] were adapted to μ and μ + ε, with ϵ> 0,
where μ + ε is the smallest count value larger than the sample
minimum, μ. ,e modified frequency routine involving μ
and μ + ε extends the application of the μ and (μ + 1) fre-
quency method to the real-world count data exhibiting
varying observational intervals.

To assess the strict response of the DGP to the claim
count data, the study is conducted from a pure distributional
perspective in the absence of explanatory variables. In future
studies, however, incorporating relevant covariates into the
modelling framework may offer additional insights for
enhanced performance evaluation of the DGP. ,e out-
comes will complement the present study in contributing
towards optimality considerations for the allocation of
premium funds by non-life insurance service providers.
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,e data used to support the findings of this study are
available from the corresponding author upon request.
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Table 7: AIC statistics for the negative binomial and DGP.

Distribution 2012 2013 2014 2015 2016
Reported claims
Negative binomial model 329.0927 366.1941 343.5535 352.7973 372.5812
DGP model 55.9362 55.9999 55.9998 55.9999 55.9972
Settled claims
Negative binomial model 274.8660 259.0694 269.3573 277.0937 284.2884
DGP model 57.9813 57.9958 57.9476 57.9653 57.8863

Table 8: BIC statistics for the negative binomial and DGP.

Distribution 2012 2013 2014 2015 2016
Reported claims
Negative binomial model 331.5304 368.6319 345.9913 355.2351 375.0189
DGP model 57.1299 57.1936 57.1935 57.1936 57.1909
Settled claims
Negative binomial model 277.3822 261.5856 271.8735 279.6099 286.8046
DGP model 59.1750 59.1895 59.1413 59.1590 59.0800

Table 9: Parameter estimates from the negative binomial.

Variable
Estimator (s.e)

􏽢r 􏽢m

Reported claims 0.6538 (0.0710) 477.0055 (53.2312)
Settled claims 0.8596 (0.0978) 74.7975 (7.3175)

Table 10: Parameter estimates from DGP.

Variable
Estimator (s.e)

􏽢μ 􏽢α 􏽢λ

Reported claims 2.3354
(1.9731)

0.0017
(0.0012) 2.8171 (2.0240)

Settled claims 1.9089
(1.6214)

0.0077
(0.0015) 1.9333 (1.4524)

Table 11: Information criteria for model fitting.

Model AIC BIC
Reported claims
Negative binomial model 1750.1770 1755.8010
DGP model 249.9887 251.1824
Settled claims
Negative binomial model 1311.1770 1316.8010
DGP model 251.9658 253.1595
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