Near infrared system coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution

No Thumbnail Available

Date

2018

Authors

Kutsanedzie, F. Y.
Chen, Q.
Hassan, M. M.
Yang, M.
Sun, H.
Rahman, M. H.

Journal Title

Journal ISSN

Volume Title

Publisher

Food Chemistry

Abstract

Total fungi count (TFC) is a quality indicator of cocoa beans when unmonitored leads to quality and safety problems. Fourier transform near infrared spectroscopy (FT-NIRS) combined with chemometric algorithms like partial least square (PLS); synergy interval-PLS (Si-PLS); synergy interval-genetic algorithm-PLS (Si-GAPLS); Ant colony optimization - PLS (ACO-PLS) and competitive-adaptive reweighted sampling-PLS (CARS-PLS) was employed to predict TFC in cocoa beans neat solution. Model results were evaluated using the correlation coefficients of the prediction (Rp) and calibration (Rc); root mean square error of prediction (RMSEP), and the ratio of sample standard deviation to RMSEP (RPD). The developed models performance yielded 0.951≤Rp≤0.975; and 3.15≤RPD≤4.32. The models' prediction stability improved in the order of PLS<CARS-PLS<ACO-PLS<Si-PLS<Si-GAPLS. FT-NIRS combined with Si-GAPLS may be employed for in-situ and noninvasive quantification of TFC in cocoa beans for quality and safety monitoring.

Description

Keywords

Chemometric algorithms, Prediction, Preprocessed spectra, Spectral interval, Variable selection

Citation