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Abstract 
A stochastic approach is presented in view that a time series modelling is 
achieved through an Autoregressive Moving Average (ARMA) model. The 
applicability of the ARMA model is then further presented using the Great 
Letaba River as a case study. River flow discharge for 25 years (1989-2014) for 
the Great Letaba River was obtained from the Department of Water and Sa-
nitation, South Africa and analysed by Autoregressive (AR), Autoregressive 
Moving Average (ARMA) and Autoregressive Integrated Moving Average 
(ARIMA) models. Monte Carlo simulation approach was used to generate 
forecasts of the ARIMA error model for the next 25 years. Initial model iden-
tification was done using the Autocorrelation function (ACF) and Partial 
Autocorrelation function (PACF). The model analysis and evaluations pro-
vided proper predictions of the river system. The models revealed some de-
gree of correlation and seasonality behaviour with decreasing river flow. 
Hence, in conclusion, the Great Letaba River flow has shown a decreasing 
trend and therefore, should be effectively used for sustainable future devel-
opment. 
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1. Introduction 

The hydrological modelling of a river system is not only complex but also chal-
lenging because of increasingly anthropogenic influence on river flow and cli-
mate change coupled with lack of relevant data to characterise river systems. In 
many parts of the world increases in water demand for irrigation, domestic, 
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mining and industrial uses as well as the conflicting demands for sustainability 
of the ecosystem have resulted in water stressed river basins being fully devel-
oped with highly regulated river flows. An efficient management of available li-
mited water resources needs to be promulgated for sustainable water resource 
utilisation rather than construction of new hydraulic infrastructure facilities to 
meet water shortage challenges. The water shortage problems in river basins can 
be well addressed based on proper understanding of the past, present and the 
future hydrological patterns of river flow. Real time flow forecasting is the most 
important application of hydrology for decision making in water resources 
management (Dessalegn et al., 2017). Moreover, Musa (2013) opined that in or-
der to combat water shortage issues, maximising water management efficiency 
based on stream flow forecasting is crucial. Furthermore, Otache et al. (2011a) 
emphasized that the dynamics and accurate forecasting of stream flow processes 
of a river are of paramount importance in the management of extreme events 
such as floods and droughts, optimal designs of water storage structures and 
drainage networks. 

It should be noted however that modelling accuracy of river flow for water 
resources planning is highly dependent on relevant data availability, which 
mostly is limited in many river basins especially in Africa. In South Africa, most 
river basins are water stressed with highly regulated river flows and limited hy-
drological data. The available historical data are quite short and that if long term 
records are available, they are mostly associated with long range gaps of incon-
sistent missing records (missing information) that may lead to discarding of the 
records. In situations like this, a system designed based on such historical data is 
subject to inefficiency and may have a great chance of being inadequate for the 
unknown flow sequence that the system might experience. It should be realised 
that historical data comprising a single short series do not cover a sequence of low 
flows as well as high flows. Thus, the reliability of a system has to be evaluated un-
der these conditions which are not possible with historical data alone (Otache et 
al., 2011a). Moreover, it should be noted that the existing simulation models and 
software do not effectively support scenario analyses (Peng et al., 2018). There-
fore, there is a need for a proper tool that can model river system flow to mimic 
actual physical natural flow characteristics under prevailing conditions. 

In South Africa, an increasing importance is placed on the operation of reser-
voirs and water resource systems. Since 1985, the water resources yield model 
(WRYM) and the water resources planning model (WRPM) have been applied 
to support decisions concerning the operations of water supply to the region. 
The WRYM and WRPM apply stochastically generated stream flow sequences 
for operational analysis (Nyabeze et al., 2007). Moreover, the water research 
commission (WRC, 2004) monthly stochastic stream flow model for South 
Africa (STOMSA) has been used to generate coefficients for stochastic stream 
flow. The generated coefficients in STOMSA subsequently are used as input to 
the WRYM/WRPM models (Nyabeze et al., 2007). Unfortunately these models 
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are not capable of comprehensively modelling stochastic river/stream flow to 
provide conclusive results on the best model to be selected. 

Over the years, mathematical models have been developed for stochastic 
modelling of river/stream flow based on either statistical analysis (Mukherjee & 
Mansour, 1996) or physical considerations (Garrote & Bras, 1995). In statistical 
modelling, the historical record is considered to be a sample out of a population 
of natural river flow process. It is not essential to realise that generated flows are 
neither historical flows nor a prediction of future flows but rather are represent-
ative of likely flows in a river system (Otache et al., 2011a). 

The history of development of ARMA models started in many decades back, 
since in 1920s, when Autoregressive (AR) models were introduced for the first 
time by (Yule, 1926). In 1930s these models gained more strength, when they 
were supplemented with Moving Average (MA) schemes by (Slutsky, 1937) and 
when the AR models and MA schemes were treated as a combined model by 
(Wold, 1938). Wold (1938) proved that it is possible that the ARMA modelling 
processes can be used to model all stationary time series as long as the appropri-
ate order of p (i.e. the number of AR parameters/terms), and q (i.e. the number 
of MA parameters/terms) are appropriately specified. This may imply that for 
any time series data denoted by tY  can be modelled as a combination of past 

1 2, , ,t t t pY Y Y− − −  values and/or past errors/residuals denoted by 1 2 , , ,t t t qW W W− − −  
in ARMA (p, q) model family as: 

1 1
p q

t j t j j t j tj jY C Y W Wθ− −= =
= + ∅ + +∑ ∑                (1) 

in which , 1, 2, ,tY t N=   is the series of data to be modelled; p is the number of 
AR parameters; j∅  is the jth AR parameter; q is the number of MA parameters; 

jθ  is the jth MA parameter; C is a constant; and , 1, 2, ,tW t N=   is the innova-
tion process (residual series also known as white noise term); and N is sample 
size (i.e. the total number of observations). 

It should be noted that in a real world modelling of time series systems, it re-
quires that four steps should be considered, namely (Makridakis & Hibon, 1995): 
firstly, the original time series tY  should be transformed to become stationary 
around its mean and its variance. Secondly, the appropriate order of p and q 
should be specified. Thirdly, the value of the parameters j∅  for 1,2, ,j p=   
and/or jθ  for 1, 2, ,j q=   must be estimated using some non-linear optimi-
sation procedure that minimizes the sum of square errors or some other appro-
priate loss function. Fourthly, practical ways of modelling seasonal series must 
be envisioned and the appropriate order of such models specified. 

It was Box and Jenkins (1976) who popularized the use of ARMA models 
through their establishment of methodological procedure for making the series 
stationary in both its mean and variance. They also suggested the use of auto-
correlations and partial autocorrelation coefficients for determining appropriate 
values of p and q and its seasonal equivalent P and Q when the series shows sea-
sonality. Moreover, they provided a set of computer programs that can assist to 
identify appropriate values of p and q, as well as P and Q, and estimate the pa-
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rameters involved. Their procedure followed by diagnostic check to determine 
whether or not the residuals comply with white noise conditions (i.e. whether or 
not it satisfy the condition specified for white noise). The Box and Jenkins ap-
proach came to be known as the Box-Jenkins methodology to ARIMA models, 
where the letter “I” stand for word “Integrated”, hence it sounds as “Autoregressive 
Integrated Moving Average” (ARIMA) models. Moreover, generally Box-Jenkins 
methodology modelling framework, considers three key steps for fitting ARMA 
models, as: 1) Identification of model; 2) Model parameters estimation; and 3) 
Diagnostic process. In this case, these steps are repeated until the best model is 
obtained. 

It is important to know that in many cases in order to account for stationary 
and seasonality issues, ARMA models are used with different transformations of 
the original (observed) series (Granger & Newbold, 1976). The commonly used 
transformations are the logarithm transformation (Box & Jenkins, 1977) and 
square root transformation (Mcleod et al., 1977). Usually these transformations 
decide the class to which the model belongs. It should be noted that both ob-
served and standardized series establish important classes and that standardiza-
tion ensures the removal of periodicities inherent in the process (Mujumdar & 
Kumar, 1990). In many cases, the ARMA model includes the AR and seasona-
lized ARIMA models (Musa, 2013; Vandaele, 1983; Otache et al., 2011b). The 
common and easy way to include seasonal ARIMA models as ARMA model is 
through deseasonalized ARMA model. 

In this study, a stochastic approach is presented in view that a time series 
modelling is achieved through Autoregressive Moving Average (ARMA) model 
family, the ARIMA model was obtained through a deseasonalized ARMA model. 
The model that best describes the marginal probability distribution of river flows 
was selected for representation of the Letaba river flow time series process and for 
forecasting. The river flow discharge of a 25 years data set was analysed using three 
different models, the Autoregressive (AR) model, Autoregressive Moving Average 
(ARMA) model and Autoregressive Integrated Moving Average (ARIMA) mod-
el. The Autocorrelation function (ACF) and Partial Autocorrelation function 
(PACF) were used for initial model identification. 

2. Materials and Methods 
2.1. Study Area 

The Great Letaba River system (also known as Groot Letaba River system) falls 
within the Olifants River basin Water Management Area (WMA). It is one of the 
major tributaries of the Olifants River. The Great Letaba River sub-catchment 
lies on latitude 23˚6'1"S - 24˚5'59"S and longitude 29˚48'6"E and 31˚49'17"E 
(Figure 1). It is located in the Limpopo Province, north-eastern part of South 
Africa. The sub-catchment drains a surface area of approximately 13,670 km2 
(DWAF, 2006). The Great Letaba, Klein (Little) and Middle Letaba Rivers are 
the main tributaries of the Letaba River. The Letaba River is a perennial river  
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Figure 1. The Letaba river system and flow gauging station networks. 

 
contributing over 50% of the downstream flow of the Olifants River into the 
Kruger National Park (KNP). KNP is one of the world’s renowned conservation 
tourism areas in South Africa. Hence, an effective management of the Letaba 
River flow is of paramount importance for the sustenance of the ecosystem and 
maintenance of downstream water requirements. Generally, the flow gauging 
stations network in the Letaba River system is poor with most of the stations 
concentrated in the upper part of the catchment (DWAF, 2006). Annual rainfall 
ranges from 1000 mm - 2000 mm with higher rainfalls at the mountainous es-
carpment areas of high altitudes with wet and humid conditions. Mean annual 
temperature is about 18˚C and relative humidity of about 70% (DWA, 2004). 

The monthly time series river flow data of the downstream gauge station 
B8H034 for the Letaba River system were found to be adequate with minimum 
missing records compared to the other gauge stations records hence, were used 
to model the river system flow process. 

2.2. Theoretical Formulations and Statistical Procedures 

The MATLAB 2014a Econometrics ToolboxTM Package was used to carry out the 
analysis of a monthly observed time series river flow data set. The observed river 
flow time series data set of 25 years (i.e. equivalent to a sample size of 300 
monthly observations) obtained from Department of water and Sanitation (DWS), 
South Africa, was first standardized and used for computation of the Autocorrela-
tion Function (ACF) and Partial Autocorrelation Function (PACF). The stan-
dardised series denoted by tX , in this case, is defined as the time series, tY , as: 

t i
t

i

X X
Y

Z
−

=                          (2) 
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where iX  is the estimated mean of the river flows of the ith month to which 
time period t belongs and iZ  is the estimated standard deviation of the river 
flows of the time period i. It was important to standardize time series data to 
ensure that data set does not have periodicities patterns inherent in the process. 

Autoregressive Moving Average (ARMA) modelling process was used to 
model stationary time series for a given appropriate order of Autoregressive 
(AR) and Moving Average (MA) (i.e. the parameters p and q) of modelled time 
series tY . The time series was modelled as a combination of past observations 

1 2, , ,t t t pY Y Y− − −  and past innovations/errors/residuals 1 2, , ,t t t qW W W− − − . 
Hence, in general form ARMA (p, q) model was modelled as Equation (1) but, 
for clarity purpose herein rewritten as: 

1 1
p q

t j t j j t j tj jY C Y W Wθ− −= =
= + ∅ + +∑ ∑                (3) 

in which all parameters are as previously defined. 
It was assumed that the innovation process (i.e. the residual/white noise) term 

tW  in equation (3) constitutes an independently identically distributed (i. i.d.) 
random variable with mean zero and uncorrelated individual elements. It should 
be realised that the AR (p), MA (q) models, and a combined ARMA (p, q) mod-
el, usually are expressed in lag operator polynomial notation in a compact form 
as i

t t iLY Y −= , in which the ARMA lag operator polynomial function defines 
both the degree p AR lag operator polynomial function 

( ) ( )2
1 21 p

pL L L L∅ = −∅ −∅ − −∅  and degree q MA lag operator polynomial 
function ( ) ( )2

1 21 q
qL L L Lθ θ θ θ= + + + + . Hence, the ARMA (p, q) lag opera-

tor polynomial function model is written as: 

( ) ( )t tL Y C L Wθ∅ = +                       (4) 

Dividing each term of Equation (3) by ( )L∅ , the equation can be reformu-
lated as: 

( )
( )
( ) ( )t t t

LCY W L W
L L

θ
µ ϕ= + = +

∅ ∅
                (5) 

where 
( ) 1 21 p

C C
L

µ = =
∅ −∅ −∅ − −∅

 is the unconditional mean of the sto-

chastic process, and ( )Lϕ  is a rational infinite degree lag operator polynomial 

( )Lϕ , such that  

( ) ( )2
1 21L L L Lϕ ϕ ϕ ϕ ∞

∞= + + + + .                (6) 

It should be noted that the constant property of an arima model object func-
tion corresponds to a constant C and not to the unconditional mean µ . Equa-
tion (5) is considered as a stationary stochastic process provided that the coeffi-
cients iϕ  are absolutely summable. Note that the stability and invertibility of the 
ARMA polynomial is enforced in the MATLAB-Econometrics Package and that its 
estimate imposes stationarity and invertibility constraints during estimation. 

In this work, the overall modelling effort was to determine hydrological model 
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that can best describe the Great Letaba river flow. The modelling method used 
involved two main stages, model selection and forecasting using a regression 
model with ARIMA (p, D, q) errors. The seasonal ARIMA model was achieved 
through deseasonalized ARMA model. Generally, model selection was carried out 
in an iterative process that involved three key steps: specification tests; model 
comparisons; and diagnostic or goodness-of-fit checks. Specification tests were 
carried out to identify the model family that describes the data generating process. 
Initially, models were identified by computing the Autocorrelation Function 
(ACF) and Partial Autocorrelation Function (PACF) of the time series data set to 
qualitatively assess autocorrelation. Due to seasonality effects in observed time se-
ries data, deseasonalisation was carried out to remove seasonal trend patterns. 
Differencing technique was used to remove linear trend and to ensure that a sta-
tionary stochastic process is achieved. Differencing was carried out by taking a 
first difference of the time series data set, and then followed by computation of 
ACF and PACF autocorrelation functions using differenced time series data set. 

Based on the ACF and PACF autocorrelation functions results, model order 
was specified as degree p AR lag, degree q MA lag, with D differencing degree, 
that is, an ARIMA (p, D, q) model family. Alternatively, the procedure for spe-
cifying model order can be achieved by using a log likelihood measure. One of 
the most used measures is the Akaike’s Information Criterion (AIC), defined as 
(Musa, 2013). 

( ) ( )2 log 2AIC k ML k= ∗ + ∗                    (7) 

in which k is the number of independently adjusted parameters in the model, 
ML is the maximum likelihood value of the model, and * is multiplication sign. 
For ARMA (p, q) model family, where k p q= + , the AIC (p, q) value can be 
calculated as (Musa, 2013): 

( ) ( ) ( )2, log 2tAIC p q N p qδ= ∗ + ∗ +                (8) 

where 2
tδ  is the variance of the innovation process (i.e. the white noise/errors/ 

residuals variance). In this case, the best model is the one with the lowest calcu-
lated AIC value. 

The specified model was then checked by using goodness of fit technique to 
assess the sample adequacy, to verify that all the model assumptions made are 
valid and evaluate out of sample forecast performance of the selected model. Pa-
rameters of the best selected model were then used to formulate a regression 
model for generating forecasts time series. Monte Carlo simulation forecasts ap-
proach was used to generate forecasts time series for the next 25 years. In Monte 
Carlo simulation forecasts approach, the regression model with ARIMA (p, D, q) 
errors was specified and forecasted. The regression model for generating fore-
casts was simulated with 1000 realisations (sample paths). 

3. Results and Discussion 

The mean monthly time series river flow observed data (from 1989-2014) for 
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gauge station B8H034 for the Letaba River system were plotted over a time ho-
rizon (Figure 2). 

From Figure 2, the time series data set appears to show some degree of sea-
sonality. Initially, the Autocorrelation Function (ACF) and Partial Autocorrela-
tion Function (PACF) computations were carried out on the standardised ob-
served time series (Figure 3). 

The initial ACF and PACF computational results (Figure 3) indicate a signif-
icant seasonality with decaying ACF and PACF. This means that the river flow 
time series process is a seasonal and non-stationary stochastic process. To en-
force a stationary stochastic process on the mean monthly time series data (from 
1989-2014), differencing technique was used and then differenced Time series 
stochastic process, autocorrelation function (ACF) and partial autocorrelation 
function (PACF) were plotted (Figure 4 and Figure 5, respectively). 

Figure 4 clearly shows that the differenced time series appears more statio-
nary. The differenced time series was then used to compute and plot the sample 
ACF and PACF to determine the time series behaviour more consistently with a  

 

 
Figure 2. Mean monthly river flow time series of the Letaba river system. 
 

 
Figure 3. The ACF and PACF of the time series before differencing process. 
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Figure 4. Differenced time series stochastic process of the Letaba river flow. 
 

 
Figure 5. The ACF and PACF of the time series after differencing process. 

 
stationary stochastic process (Figure 5). 

It can be observed from Figure 5 that, the ACF of the differenced time series 
decays more quickly and the PACF cuts off after lag 12. This shows behaviour 
consistent with AR (12) process (i.e. a twelve degree autoregressive AR (12) 
model). So the ARIMA (p, D, q) model family was specified and then estimated 
by considering appropriate p AR and q MA lags. Since, a significant correlation 
appeared on both the ACF and PACF processes at 1, 3, 6 and 12 lags, the 
ARIMA (12, 1, 1), ARIMA (12, 1, 3) and ARIMA (12, 1, 6) models were specified 
and estimated. The results were then compared for the best model selection. The 
innovation process distribution of the time series was considered to be a Gaus-
sian with a constant variance. 

In order to ensure that the selected model actually describes the time series 
stochastic process of the particular system, each specified model was checked for 
goodness of fit and analysed. The residuals from the fitted model were inferred 
and checked to see if they are normally distributed and uncorrelated. It is im-
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portant to realise that residuals distribution should portray a normally distribu-
tion behaviour and must be uncorrelated for the best model to be considered. 
Figures 6-8 show results of goodness of fit checks for the specified ARIMA (12, 
1, 1), ARIMA (12, 1, 3) and ARIMA (12, 1, 6) models, respectively. 

From Figures 6-8, the goodness of fit check indicates that the residuals are 
reasonably normally distributed as well as significantly uncorrelated for the 
ARIMA (12, 1, 6) model compared to the ARIMA (12, 1, 1) and ARIMA (12, 1, 
3) models, hence the ARIMA (12, 1, 6) model was considered as the best model 
that can well describe the stochastic time series behaviour of the Great Letaba 
River system. The ARIMA (12, 1, 6) model was therefore used to generate fore-
casts of the River system for the next 25 years (i.e. 300 months from 361 to 660 
periods). Monte Carlo simulation approach was used for forecasting the flow 
time series of the Great Letaba River flow for the next 25 years (Figure 9). 

 

 
Figure 6. Goodness of Fit Check for Model of One degree Difference with Twelve AR lags 
and One MA lag. 

 

 
Figure 7. Goodness of Fit Check of Model of One degree Difference with Twelve AR lags 
and Three MA lags. 

https://doi.org/10.4236/gep.2019.76004


G. E. Kifanyi et al. 
 

 

DOI: 10.4236/gep.2019.76004 52 Journal of Geoscience and Environment Protection 
 

 
Figure 8. Goodness of Fit Check for Model of One degree Difference with Twelve AR lags 
and Six MA lags. 

 

 
Figure 9. Forecast time series process of the Great Letaba River flow for the next 25 years. 

 
It should be noted that the residuals from the fitted model were inferred and 

checked to see if they are normally distributed and uncorrelated as previously 
discussed. In Figure 9, the Minimum Mean Square Error (MMSE) and Monte 
Carlo (MC) forecasts show the river flow continuing to decline over the forecast 
time horizon (period). The confidence bounds show that a decline in river flow 
is plausible, but, since this is a nonstationary process and forecasting with inte-
grated errors, the width of the forecast intervals grows over time horizon. It can 
also be observed from Figure 9 that, the MMSE and MC forecasts are virtually 
equivalent. However, there are minor discrepancies in the forecast intervals. The 
discrepancies are due to some errors in Monte Carlo simulation. Usually the 
discrepancies decrease as the number of Monte Carlo simulations (realisa-
tions/sample path) increases. 

4. Conclusion 

Modelling quantitative river flow for efficient water resource management is 
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important for sustainable water resource development. In this work, results re-
vealed that the Great Letaba River flow time series process shows some degree of 
correlation, seasonality and non-stationary behaviour with decreasing river flow. 
Hence, in conclusion, the Great Letaba River flow has shown a decreasing trend 
and therefore, should be effectively used for sustainable future development. 
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