
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353806691

Comparison of Missing Data Infilling Mechanisms for Recovering a Real-

World Single Station Streamflow Observation

Article  in  International Journal of Environmental Research and Public Health · August 2021

DOI: 10.3390/ijerph18168375

CITATIONS

7
READS

297

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Climate Impacts on Hydrology View project

WASCAL CCLU: Soil carbon dynamics, fertility and degradation under climate and land use change View project

Thelma Dede Baddoo

Binjiang College of Nanjing University of Information Science & Technology

9 PUBLICATIONS   73 CITATIONS   

SEE PROFILE

Zhijia Li

Hohai University

109 PUBLICATIONS   1,458 CITATIONS   

SEE PROFILE

S. N. Odai

Accra Technical University

126 PUBLICATIONS   994 CITATIONS   

SEE PROFILE

Kenneth Rodolphe Chabi Boni

Hohai University

4 PUBLICATIONS   19 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Thelma Dede Baddoo on 10 August 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/353806691_Comparison_of_Missing_Data_Infilling_Mechanisms_for_Recovering_a_Real-World_Single_Station_Streamflow_Observation?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353806691_Comparison_of_Missing_Data_Infilling_Mechanisms_for_Recovering_a_Real-World_Single_Station_Streamflow_Observation?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Climate-Impacts-on-Hydrology?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/WASCAL-CCLU-Soil-carbon-dynamics-fertility-and-degradation-under-climate-and-land-use-change?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thelma-Baddoo?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thelma-Baddoo?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thelma-Baddoo?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhijia-Li?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhijia-Li?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hohai_University?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhijia-Li?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S-Odai?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S-Odai?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S-Odai?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kenneth-Boni?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kenneth-Boni?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hohai_University?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kenneth-Boni?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thelma-Baddoo?enrichId=rgreq-147c3b6908ad278e54d67050ed081c78-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgwNjY5MTtBUzoxMDU1MzAyNTczMTA5MjQ4QDE2Mjg2MTUxNDgyOTI%3D&el=1_x_10&_esc=publicationCoverPdf


International  Journal  of

Environmental Research

and Public Health

Article

Comparison of Missing Data Infilling Mechanisms for Recovering
a Real-World Single Station Streamflow Observation

Thelma Dede Baddoo 1,2,*, Zhijia Li 2, Samuel Nii Odai 3, Kenneth Rodolphe Chabi Boni 4,
Isaac Kwesi Nooni 1,5,6 and Samuel Ato Andam-Akorful 7

����������
�������

Citation: Baddoo, T.D.; Li, Z.; Odai,

S.N.; Boni, K.R.C.; Nooni, I.K.;

Andam-Akorful, S.A. Comparison of

Missing Data Infilling Mechanisms

for Recovering a Real-World Single

Station Streamflow Observation. Int.

J. Environ. Res. Public Health 2021, 18,

8375. https://doi.org/10.3390/

ijerph18168375

Academic Editor: Yu-Pin Lin

Received: 30 June 2021

Accepted: 5 August 2021

Published: 7 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Binjiang College, Nanjing University of Information Science & Technology, No.333 Xishan Road,
Wuxi 214105, China; nooni25593@alumni.itc.nl

2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; zjli@hhu.edu.cn
3 Office of the Vice Chancellor, Accra Technical University, Accra GA000, Ghana; snodai@yahoo.com
4 College of Computer and Information Engineering, Hohai University, Nanjing 211100, China;

boni_kenneth@yahoo.fr
5 Wuxi Institute of Technology, Nanjing University of Information Science & Technology, Wuxi 214105, China
6 School of Geographical Sciences, Nanjing University of Information Science & Technology,

Nanjing 210044, China
7 Department of Geomatic Engineering, Kwame Nkrumah University of Science and Technology,

Kumasi AK000, Ghana; aakorful@gmail.com
* Correspondence: mzdede2010@gmail.com

Abstract: Reconstructing missing streamflow data can be challenging when additional data are
not available, and missing data imputation of real-world datasets to investigate how to ascertain
the accuracy of imputation algorithms for these datasets are lacking. This study investigated the
necessary complexity of missing data reconstruction schemes to obtain the relevant results for a
real-world single station streamflow observation to facilitate its further use. This investigation was
implemented by applying different missing data mechanisms spanning from univariate algorithms to
multiple imputation methods accustomed to multivariate data taking time as an explicit variable. The
performance accuracy of these schemes was assessed using the total error measurement (TEM) and a
recommended localized error measurement (LEM) in this study. The results show that univariate
missing value algorithms, which are specially developed to handle univariate time series, provide
satisfactory results, but the ones which provide the best results are usually time and computationally
intensive. Also, multiple imputation algorithms which consider the surrounding observed values
and/or which can understand the characteristics of the data provide similar results to the univariate
missing data algorithms and, in some cases, perform better without the added time and computational
downsides when time is taken as an explicit variable. Furthermore, the LEM would be especially
useful when the missing data are in specific portions of the dataset or where very large gaps of
‘missingness’ occur. Finally, proper handling of missing values of real-world hydroclimatic datasets
depends on imputing and extensive study of the particular dataset to be imputed.

Keywords: missing data; univariate imputation; multiple imputation; SPSS; R; China

1. Introduction

Missing data are an issue, whether we like it or not [1]. For instance, incomplete
streamflow data (missingness) are faced frequently in practice due to instrument failure
or damage, and a host of other factors [1–3]. Missing values in data can pose complica-
tions, due to the fact that further data processing and analysis mostly require complete
datasets [4]. If not properly handled, they may introduce bias into the observed datasets,
which subsequently lead to uncertainty in hydrological model outputs (particularly in cases
where the data span or length is limited) [5]. Thus, properly filling streamflow missing
data would not only improve model evaluation but facilitate water resource conservation
efforts in water-limited regions across the world.
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Missing data are not problematic per se; but rather it is the handling that raises concep-
tual difficulties and computational challenges [6]. Selecting a particular method is based
on several factors, including the number of missing observations, seasonal characteristics
of missing observations, and available data from neighboring stations [7].

A runoff-gauging system in a watershed provides hydrologic time series data needed
to plan, develop, implement, and manage water resources projects. Long periods of
historical records of data not only enhance our understanding of changes in water resources
both in space and time but also improve our skills in hydrological modelling, particularly
in a changing climate [8]. Therefore, missingness in streamflow datasets must be refilled
with appropriate values. In statistics, this process is called imputation [4].

According to Chandrasekaran et al. [9], observed datasets may mostly be univariate,
or multivariate datasets may lack correlation. A univariate time series is a sequence of
single observations at consecutive points in time, and even though generally considered as
one column of observations, time is actually an implicit variable [4]. Also, Moritz et al. [4]
stated that imputation of univariate time series are a special challenge and Moritz and
Bartz-Beielstein [10] developed algorithms for missing value imputation of univariate time
series in R, based on the input data characteristics such as seasonality, or trend, or both.

Multiple imputation is acclaimed as an appropriate way of handling incomplete data,
since it considers the uncertainty in the imputations [11]. Multiple imputation (MI) [12],
Expectation-Maximization (EM) [13] and other algorithms of missing data imputation have
become very popular in recent studies, however, they require multivariate data because
they depend on inter-attribute or inter-variable correlations to estimate values for the
missing data. Moreover, since univariate time series have no other correlated variables
except time, these algorithms fail for missing data imputation of univariate time series [4,9].

Different methods are used for the infilling or reconstruction of missing data, including:
univariate time series [9,14–18], hydroclimatic values, and streamflow values [7,19–27],
among others. However, some drawbacks from some of these studies have been identified.
Some of these studies (especially for univariate time series) focus on the introduction of
somewhat novel complex algorithms, which are supposed to perform satisfactorily across
board for all univariate time series without much attention to the fact that different data
possess different attributes (see [17,18,28–33]).

The other drawback is the requirements of multiple variable input data from other
sources [7,26,34], which might pose a challenge when climate variables are not readily
available or only data from a single streamflow outlet station is available. Many more
additional drawbacks are related to the procedure used in the data processing such as
hydrological models [27,35] or machine learning models (e.g., artificial neural networks
(ANNs)) [2,5,7,22,24,36,37].

Despite their advantages in improving the understanding of missing data imputation,
several of these studies focusing on missing data imputation methods make use of complete
datasets and the application of randomly introducing different proportions of missingness
to this complete data by one mechanism or another. Therefore, missing data imputation of
real-world datasets to investigate how to ascertain the accuracy of imputation algorithms
for these datasets are lacking, and the mechanisms of randomly introducing missing data
into complete datasets may or may not properly replicate the observed field situations.
In their work, Moritz and Bartz-Beielstein [10] stated that of all the available imputation
methods, no specific overall best mechanism could be established. Therefore, missing
data imputation involves the imputer providing efficient methods for reconstructing the
missing values, especially for real-world datasets without added complexity.

The time aspect of a univariate time series dataset, although considered implicit, is a
variable nonetheless. Therefore, in this study, we investigate the imputation of univariate
time series with multivariate algorithms by taking time as an explicit variable and compar-
ing their performances to the well-known univariate missing value imputation algorithms.
We also apply a multivariate algorithm that can use the time characteristics of the dataset
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to generate and add covariates in the form of polynomials of time to the model to be able
to apply multivariate imputation.

This paper contributes to our understanding and highlights recent developments in
filling missing data, particularly in geographical areas that often suffer from inadequate
hydrological data by tackling questions such as: (1) can multiple imputation methods
be used with accuracy on univariate time series data, and how do they compare with
univariate time series algorithms; and (2) how do we handle missing data in real-world
data, and is only imputation enough?

This study investigated the performance of differing missing value imputation mecha-
nisms on real-world field data with missing data whose actual values are unknown, with
the aid of a reference complete dataset of the same period from another catchment.

We used approaches that take as input streamflow data from a single streamflow
station to reconstruct missing streamflow data values in the Zhidan catchment in Northern
China. Based on several missing data reconstruction algorithms, it is easy to use graph-
ical user interface (GUI) statistical software to perform more complex programming, to
investigate the complexity necessary to deal with missing data of univariate time series.
As the streamflow data of the Zhidan catchment is field data from observation and the
actual missing values are unknown, we used a similar single station observed streamflow
data from the Maduwang catchment, also in Northern China, as the reference dataset and
compared the results. According to van Buuren [1], imputation should not be considered
as prediction, where the focus is to find the missing data algorithms which produce values
closest to the true data (in cases where studies are begun with complete datasets, missing
data are introduced and then imputation algorithms applied) and therefore in this study,
we concentrated rather on the bias obtained from the differing missing data algorithms,
and in this paper we suggest the application of other statistical metrics to be considered in
the cases of real-world situations where the complete datasets are not available.

The rest of the paper is organized as follows. In Section 2, the data used and methods
of study are described. In Section 3, the results are presented, and in Section 4, the results
obtained from the study are discussed. The main conclusions of the study are summarized
in Section 5.

2. Materials and Methods
2.1. Study Areas and Data Used

The study was conducted in the Zhidan watershed, geographically located in Shaanxi
Province, China (on latitude 36◦49′ N, longitude 108◦46′ E) [38]. The watershed (a subset of
the Yellow River watershed) is about 774 km2 [39] and includes an 81.3 km of main channel
length with an average elevation of approximately 1230 m [38]. The area is a mountainous
catchment with scant vegetation. The land use of the Zhidan watershed consists mostly of
grasslands, meadows, and minor farmlands, due to the constant erosion.

The soil texture of the catchment consists of loess soil, silt soil, and saline soil and
suffers from severe soil erosion [38,40]. The area lies in the middle temperate arid region
and experiences continental monsoon climate according to the Köppen–Geiger climate and
Kan [40]. The Zhidan watershed has six meteorological stations and one hydrometeorolog-
ical (outlet) located downstream of the river (Figure 1).

The Maduwang catchment is located in the west of Shaanxi Province in Northern
China [41]. The outlet station is located at 34◦13′29′′ N, 109◦08′42′′ E on the Ba River in
Shaanxi Province in Northern China [39,41,42]. The catchment area above the station is
approximately 1601 km2 with the main channel length of 30 km and an average catchment
elevation of roughly 1166 m [39,41].

The catchment has a warm temperate semi-humid continental monsoon climate
with rainstorms mostly concentrated in the middle of the basin [41]. The annual mean
evaporation of the Maduwang catchment is 776 mm, and the annual average precipitation
is 630.9 mm [41].



Int. J. Environ. Res. Public Health 2021, 18, 8375 4 of 26

Int. J. Environ. Res. Public Health 2021, 18, x 4 of 26 
 

 

and Kan [40]. The Zhidan watershed has six meteorological stations and one hydromete-
orological (outlet) located downstream of the river (Figure 1). 

The Maduwang catchment is located in the west of Shaanxi Province in Northern 
China [41]. The outlet station is located at 34°13′29″ N, 109°08′42″ E on the Ba River in 
Shaanxi Province in Northern China [39,41,42]. The catchment area above the station is 
approximately 1601 km2 with the main channel length of 30 km and an average catchment 
elevation of roughly 1166 m [39,41]. 

The catchment has a warm temperate semi-humid continental monsoon climate with 
rainstorms mostly concentrated in the middle of the basin [41]. The annual mean evapo-
ration of the Maduwang catchment is 776 mm, and the annual average precipitation is 
630.9 mm [41]. 

The mountainous areas in the catchment are steep, the valleys are vertical and hori-
zontal, and the peaks and ridges are continuous in Qinling Mountains, with better vege-
tation [42], and therefore the land use of this catchment consists of evergreen forests, 
grasslands, and farmlands. The Maduwang watershed is also depicted in Figure 1. 

We obtained daily point streamflow data from the years 2000 to 2010 from the local 
hydrological bureau of the Zhidan watershed. The streamflow dataset of the Zhidan wa-
tershed is a single station field dataset with missing data without knowledge of the actual 
values of the missing data and, therefore, can be classified as a univariate time series da-
taset. 

Additionally, we obtained daily streamflow dataset (throughout 2000 to 2010) from 
the local hydrological bureau of the Maduwang watershed (a semi-humid watershed lo-
cated on the Ba River in Shaanxi Province of northern China) [39,41]. The Maduwang wa-
tershed dataset was complete with no missing values. 

The reason for selecting of the Maduwang watershed as the control was based on 
data availability and the fact that the Zhidan and Maduwang watersheds possess a similar 
seasonal rainfall pattern that is intense during flood seasons, with heavy rainstorms being 
the considerable cause of flash floods [39]. This shared seasonality is also observed in the 
streamflow data of these catchments. In addition, we chose the Zhidan and Maduwang 
catchments for this study because of lack of connective data from other catchments. The 
study focused on reconstructing streamflow missing data in the Zhidan watershed due to 
its data scarcity and lack of research in this area also pertaining to its semi-arid nature. We 
selected the Maduwang catchment as the appropriate control dataset to compare the miss-
ing data reconstruction algorithms due to similarities in the seasonality and distribution 
of their data to avoid bias in the results obtained. 

To ensure the efficacy of the missing data values imputation, we also obtained the 
yearly flood event data of both watersheds from 2000 to 2010 to inspect for outliers in the 
datasets. 

 
Figure 1. Zhidan and Maduwang catchment areas showing the river network with the meteorological
stations and the hydrometeorological (outlet) stations.

The mountainous areas in the catchment are steep, the valleys are vertical and hori-
zontal, and the peaks and ridges are continuous in Qinling Mountains, with better veg-
etation [42], and therefore the land use of this catchment consists of evergreen forests,
grasslands, and farmlands. The Maduwang watershed is also depicted in Figure 1.

We obtained daily point streamflow data from the years 2000 to 2010 from the local
hydrological bureau of the Zhidan watershed. The streamflow dataset of the Zhidan
watershed is a single station field dataset with missing data without knowledge of the
actual values of the missing data and, therefore, can be classified as a univariate time
series dataset.

Additionally, we obtained daily streamflow dataset (throughout 2000 to 2010) from the
local hydrological bureau of the Maduwang watershed (a semi-humid watershed located
on the Ba River in Shaanxi Province of northern China) [39,41]. The Maduwang watershed
dataset was complete with no missing values.

The reason for selecting of the Maduwang watershed as the control was based on
data availability and the fact that the Zhidan and Maduwang watersheds possess a similar
seasonal rainfall pattern that is intense during flood seasons, with heavy rainstorms being
the considerable cause of flash floods [39]. This shared seasonality is also observed in the
streamflow data of these catchments. In addition, we chose the Zhidan and Maduwang
catchments for this study because of lack of connective data from other catchments. The
study focused on reconstructing streamflow missing data in the Zhidan watershed due to
its data scarcity and lack of research in this area also pertaining to its semi-arid nature. We
selected the Maduwang catchment as the appropriate control dataset to compare the miss-
ing data reconstruction algorithms due to similarities in the seasonality and distribution of
their data to avoid bias in the results obtained.

To ensure the efficacy of the missing data values imputation, we also obtained the
yearly flood event data of both watersheds from 2000 to 2010 to inspect for outliers in
the datasets.

2.2. Methods
2.2.1. Exploratory Data Analysis (EDA)

Exploratory data analysis was firstly performed on the streamflow data of the Zhidan
watershed because it contained missing data. The raw data were preprocessed in Microsoft
Excel and imported to SPSS version 23 [43]. The SPSS software has been recommended in
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several studies [34,44–47]. Exploratory data analysis (EDA) was performed to check for
quality control.

1. Descriptive statistics

This was implemented by graphing the catchment data to draw emphasis on the
missing data amounts and the missing data locations by plotting the daily streamflow of
the Zhidan watershed. The average monthly streamflow data for each year was also plotted
to have a first look at the seasonality apparent in the Zhidan watershed to roughly guess
the approximate values for the missing portions of the data due to the knowledge obtained.

To further understand the scope of the missing data problem, descriptive and diag-
nostic test statistics were conducted on the Zhidan data series. This was done to ascertain
the descriptive statistics, missingness ratio, normality, or non-normality of the raw Zhidan
streamflow dataset. A significant question pertinent to missing time series data is when
the threshold of missingness is beyond a certain critical value (e.g., 5% as proposed by
Little et al. [6]), a strong justification for employing a suitable missing data method is
presented [6]. The normality or non-normality of the dataset was further explored by
drawing the distribution of the dataset.

2. Missingness mechanism and missingness pattern

In addition, we applied Little’s MCAR test [48] to determine the mechanism of miss-
ingness (i.e., missing at random (MAR), missing completely at random (MCAR), and
missing not at random (MNAR)). The missing data pattern was ascertained by thoroughly
investigating the whole dataset to determine whether it has a monotone or general (non-
monotone) pattern.

According to Little and Rubin, and van Buuren [1,49], missing data patterns may
follow the monotone or general (non-monotone) patterns. In practice, the pattern of missing
data is rarely monotone but is often close to monotone [49]. Also, van Buuren [1] states that
univariate missing data form a special monotone pattern and significant computational
savings are possible if the data are monotone.

3. Decomposition and Auto-correlation

These tests were implemented because the Zhidan streamflow data is a single station
dataset. The dataset is classified as a univariate time series with no other additional
hydrological variables available. Time series decomposition divides the time series into
single component series representing a certain characteristic or pattern such as trends,
seasonalities, or irregular components [4].

Also, according to Moritz et al. [4], the idea of measuring autocorrelation is that
forecasting (and also imputation) of a time series is conceivable, since the future usually
depends on the past, thus high autocorrelation means that the future is strongly correlated
to the past, and therefore making autocorrelation an indicator for the ability to generate
reliable forecasts and imputations.

Thus, the knowledge of the auto-correlation and decomposition of the dataset in-
fluences the imputation methods for missing data reconstruction. Decomposition and
auto-correlation were implemented in the R statistical software program [50] using an
enhanced version of the Seasonal and Trend decomposition using Loess (STL) (stlplus pack-
age) [51,52] which allows for missing data, and autocorrelation function (acf function) [53]
where the na.action = na.pass function can be called to handle missing values.

The complete Maduwang dataset was then transformed into a missing dataset by
removing data to fit the Zhidan watershed’s missingness to compare the different missing
data imputation algorithms. EDA was then repeated on the complete and transformed
Maduwang dataset. Little’s test was not applied to the transformed Maduwang dataset
since it was made to mimic the missingness of the Zhidan dataset.
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2.2.2. Missing Data Imputation

1. Imputation methods

The missing data imputation methodology applied in this study was implemented con-
sidering the univariate time series dataset used and the investigation of other mechanisms
to expand the missing data reconstruction of univariate time series data.

The mechanisms of performing imputation for univariate time series can be grouped
into three categories according to Moritz et al. [4]: univariate algorithms which work with
univariate inputs without mostly considering the time series aspect of the data, univariate
time series algorithms which also work with univariate inputs but account for the time
series characteristics of the data, and multivariate algorithms on lagged data which cannot
be applied on univariate data but use the time aspect of the time series to create and
add covariates in the form of lags and leads to the input to be able to apply multivariate
imputation algorithms.

The univariate time series algorithms and multivariate algorithms on lagged data
which account for the time characteristics of the data consider the time aspect of the dataset
as an implicit variable.

The time aspect of a time series dataset, especially a univariate time series, although
implicit, is a variable nonetheless. Therefore, in this study, we investigated the imputa-
tion of univariate time series with multivariate algorithms by taking time as an explicit
variable and compare their performances to the well-known univariate missing value
imputation algorithms.

We also applied a multivariate algorithm that can use the time characteristics of the
dataset to generate and add covariates in the form of polynomials of time to the model to
be able to apply multivariate imputation.

The MI mechanism was added to this study because of the different imputed data
obtained to account for the uncertainties of the imputation process. The EM algorithm was
also investigated due to its provision of severally iterated missing data values based on the
distribution of the observed data. However, it does not provide multiply imputed results.

This study, therefore, considers the univariate time series algorithms and multivariate
algorithms on lagged data categories for univariate time series imputation and the addi-
tional methods to compare the differences in the efficiency of these algorithms on observed
field univariate time series dataset with missing values.

The missing data imputation methods applied were selected from the available al-
gorithms in the imputeTS package [10,54] of R developed specifically for missing value
imputation of univariate time series, multiple imputation and expectation-maximization
(EM) using the SPSS software [43,55] and multiple imputation using the mice [56,57] and
Amelia [58,59] packages also in R which mostly focus on missing value imputation of
multivariate data.

The imputeTS algorithms represent univariate time series algorithms, the MI and EM
mechanisms of SPSS, mice algorithms demonstrate the multivariate algorithms with time
as explicit and the Amelia algorithms exhibit multivariate algorithms with time as explicit,
multivariate algorithms on lagged data and multivariate algorithms using polynomials
of time.

The multiple imputation algorithms applied in this study were of different forms and
are presented briefly.

Multiple imputation in SPSS with the Monotone mechanism: This is a non-iterative
method that can be implemented only when the data have a monotone pattern of missing
values. For each variable in the monotone order, the monotone method fits a univariate
(single dependent variable) model using all preceding variables in the model as predictors,
then imputes missing values for the variable being fit [55].

Multiple imputation using fully conditional specification (FCS) or Multivariate imputa-
tion by chained equations (MICE), the algorithm of the mice package: FCS was introduced
in 2006 by van Buuren et al. [60] to refer to a general class of methods that specify im-
putation models for multivariate data as a set of conditional distributions. FCS imputes
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multivariate missing data on a variable-by-variable basis and necessitates a specification
of an imputation model (univariate imputation model) for each incomplete variable and
iteratively generates imputations per variable [1,60,61]. FCS is also known as MICE [62].

Multiple implementation with expectation-maximization with bootstrapping (EMB),
the algorithm of the Amelia package: The expectation-maximization with bootstrapping
(EMB) algorithm applies the well-known expectation-maximization algorithm on multiple
bootstrapped samples of the original incomplete data to draw values of the complete-
data parameters.

The algorithm then draws imputed values from each bootstrapped parameter, replac-
ing the missing values with these draws [63]. According to Honaker et al. [58,63], the EMB
algorithm performs faster, with larger numbers of variables, and is much easier to use, than
various other multiple imputation methods, but produces essentially the same answers.

Table 1 shows the classifications of the algorithms and brief descriptions of the meth-
ods used are given.

All multiple imputation algorithms used five (5) imputation (m = 5), and the random
forests algorithm applied the ten (10) trees (ntree = 10), which is the default. The default
number of trees was utilized since it has been proven to perform identically to hundred
(100) trees [57]. The EM algorithm used twenty-five (25) iterations for imputation.

The multiple imputation using the mice package algorithms run also using a monotone
sequence of imputation as in the SPSS software because univariate missing data form a
special monotone pattern [1].

The dataset used in the imputeTS package was a time series object. At the same
time, it was a dataframe with the date variable specified as a date object for the multiple
imputations using mice and Amelia in R. This was performed because the imputeTS
package requires a time series object to run. The mice and Amelia packages require
multivariate data.

The linear regression, Bayesian linear regression, and Amelia algorithms produced
some implausible imputations (that is negative streamflow values). Therefore, some bounds
(considering the seasonal time period of missing values in the dataset) were added to the
model to resolve this shortcoming.

The implementation of the lags and leads argument in Amelia which usually is
implemented returned an error as:

Amelia Error Code: 61
There is only 1 column of data after removing the ts, cs and idvars. Cannot impute without

adding polytime.
Therefore, the lags and leads argument in Amelia was executed by adding the poly-

time arguments. This could mean that Amelia would create and add both covariates of
polynomials of time and lags and leads to the imputation model.
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Table 1. Classifications of the algorithms and brief descriptions of the methods used in this study.

Imputation Method Method Multiple Imputation Description of Imputation Methods and Methods

imputeTS (univariate time series algorithms)

Kalman Smoothing and
State Space Models

(na_kalman)

Structural Model & Kalman
Smoothing (StructTS) No It implements Kalman Smoothing on structural time series

models or on the state space representation of an ARIMA
model for imputation [54]. Details on the Kalman Filtering
and State Space Models can be found in Harvey [64], Welch

and Bishop [65], and Grewal and Andrews [66].

ARIMA State Space
Representation & Kalman
Smoothing (auto.arima)

No

Seasonally Decomposed
Missing Value Imputation

(na_seadec)

Imputation by Interpolation
algorithm after
decomposition
(interpolation)

No This method, as a preprocessing step, firstly decomposes
the data and removes the seasonal component from the
time series. Then performs imputation on the trend and
irregular components and afterwards adds the seasonal

component again [9,54].
Imputation by Kalman

Smoothing and State Space
Models after decomposition

(kalman)

No

Seasonally Splitted Missing
Value Imputation

(na_seasplit)

Imputation by Interpolation
algorithm after split

(interpolation)
No

This method, also as a preprocessing step, initially splits
the times series into seasons and afterwards performs

imputation separately for each of the seasons [54].Imputation by Kalman
Smoothing and State Space
Models after split (kalman)

No

SPSS (multivariate algorithms with time as explicit)

Expectation-Maximization
(EM) No

EM is an iterative algorithm to find maximum likelihood
estimation problem for missing data. Likelihood-based

approaches define a model for the observed data and the
inferences are based on the likelihood or posterior

distribution under the posited model [1]. The major idea of
this algorithm is to calculate the values of missing variables
according to the initial parameters (means, covariance) and
observed data (E step). Then update the initial parameters
according to the complete data set that has been calculated
(M step) and repeat the two steps until convergence. Little

and Rubin, and Schafer provide extensive review of the
theory of the EM algorithm [46,67].

Monotone

Linear Regression (LR) Yes

Multiple imputation using linear regression generates
imputations by building a model from observed data and
predicting the missing values from the fitted model using

the spread around the fitted linear regression line of y
given x, as fitted on the observed data [1,57]. Here, the

analysis is performed by point estimates to find the single
best value around the regression line [68].

Predictive Mean Matching
(PMM) Yes

Predictive mean matching is a multiple imputation
mechanism where the missing values are drawn from the
observed data such that it always finds values that have

been actually observed in the data so that it is close to the
predicted mean by using an implicit model and the

nearest-neighbor together to calculate the values [1,69].
Imputations are restricted to the observed values, and

hence PMM can maintain non-linear relations when the
structural part of the imputation model is inaccurate [62],

so they are realistic and, therefore, imputations outside the
observed data range will not occur, thus avoiding problems

of meaningless imputations [1].
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Table 1. Cont.

Imputation Method Method Multiple Imputation Description of Imputation Methods and Methods

mice (multivariate algorithms with time as explicit)

Fully conditional
specification (FCS) or

Multivariate imputation by
chained equations (MICE)

PMM (mice.impute.pmm) Yes As above

Bayesian Linear Regression
(BLR) (mice.impute.norm) Yes

Multiple imputation using Bayesian linear regression [70]
is much like linear regression. However, the imputation is
done within the context of Bayesian inference where the

missing values are drawn from a Bayesian posterior
predictive distribution for the observed data [68,71]. Thus

BLR seeks to find out the posterior distribution for the
model parameters rather than finding a single best

value [68].

Random Forests (RF)
(mice.impute.rf) Yes

Random forests [72] use machine learning by combining
many regression trees (for continuous variables) or

classification trees (for discrete variables) into an ensemble
by drawing several bootstrap samples (a random sample of

predictors as the covariates before each node is split)
[1,73–75]. RF consists of iteratively training a random

forest on observed values for imputing the missing values
[25]. Thus Random forest applies a set of observed

input–output training data to create predictions of the
mean output for new input data [76].

Amelia (multivariate algorithms with time as explicit, multivariate algorithms on lagged data and multivariate algorithms using polynomials
of time)

Expectation-Maximization
with Bootstrapping (EMB)

General Amelia run (Time
as explicit) Yes

This was run as the general form of Amelia without the
specification of the time series argument but with the date

variable as a date object in R

Lags and leads (lags and
leads method) Yes

A way of handling time-series information in Amelia is to
include lags and leads of certain variables into the

imputation model. Lags are variables that take the value of
another variable in the previous time period while leads
take the value of another variable in the next time period

[4,58]. Amelia then adds covariates of lags and leads of the
specified variable to the imputation model.

Time series polynomials
with ridge priors (ts and

polytime method)
Yes

Another way Amelia allows for the consideration of time
series data is with the use of the ts and polytime arguments.
Using the ts and polytime arguments, Amelia can develop
a general model of patterns within variables across time by

creating a sequence of polynomials of the time index of
time up to the user defined k-th order, (k ≤ 3). With this
input, Amelia will add covariates to the model that are

equivalent to time and its polynomials and these covariates
will help better impute the missing values [58].

2. Imputation Accuracy statistics

The determination of imputation accuracy of the missing data reconstruction methods
applied to the transformed Maduwang dataset was executed by evaluating the fit between
imputed missing data and observed streamflow at daily scales using known goodness-of-fit
methods. Table 2 presents the statistical metric equations for evaluating goodness-of-fit
between observed streamflow (Qo) and the predicted (imputed) streamflow (Qp) which
were employed in this study. A detailed description of these metrics can be found in Yapo
et al., Moriasi et al., Dembélé and Zwart, Thiemig et al. and Beck et al. [77–81].
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Table 2. Commonly used statistical metric for evaluating the two methods.

Statistic Metric Equation Values Range Perfect Score

Root Mean Square Error (RMSE) RMSE =

√
∑n

i=1(Qo i−Qp i)
2

n
0–∞ 0

Ratio of RMSE to the standard
deviation of the observations (RSR) RSR = RMSE

Std. Dev. =

[√
∑n

i=1(Qo i−Qp i)
2
]

[√
∑n

i=1(Qo i−Qo)
2
] 0–1 0

Mean Absolute Error (MAE) MAE =
∑n

i=1|Qo i−Qp i|
n

0–∞ 0

Percent of bias (PBIAS) PBIAS =
∑n

i=1(Qo i−Qp i)

∑n
i=1(Qo i)

× 100% 0–100% 0

where n represents the number of cases of each station; Qo i and Qpi represents daily observed streamflow and the predicted (imputed)
streamflow at time i respectively. Qo = mean observed values and Qp = mean predicted (imputed) values.

Moriasi et al. [78] suggested that RMSE and MAE close to 0 are considered ideal. Also,
Singh et al. [82] mentioned that RMSE values less than half of the standard deviation of
the observations (referred to here as Std. Dev.) may be considered low. However, Moriasi
et al. [78] recommends that RMSE of less than or equal to 70% of the standard deviation of
the observed runoff is acceptable (that is RSR ≤ 0.7 is acceptable). Also, the best value of
PBIAS is 0 but PBIAS of ±25% for streamflow is acceptable [78].

The imputation accuracy measurements mentioned were performed for the whole
extent of the data set to obtain the efficiency of using the various missing data reconstruction
schemes. This error measurement of the whole extent of the data is referred to in this study
as Total Error Measurement (TEM).

In addition, to assess the closer precision of the different imputation algorithms
applied to the real-world field data with missing values in this study, we performed what
we refer to as the Localized Error Measurement (LEM), where the error statistics were
calculated again for the specific missing data portion in the data, since the missing values
were observed to be centered between 2003 and 2005 of the Zhidan dataset. It should be
noted that LEM would be effective mostly in cases where the missing data are localized at
specific points in the data.

Therefore, TEM would be adequate in cases where the missing values occur vastly
spread within the dataset as obtained when missing values are randomly introduced into
complete datasets as seen in much of the literature on missing data imputation.

LEM was implemented to “zoom in” to the intrinsic differences between the imputed
data and the complete data (for the reference dataset) and observe the changes in the
error statistics (especially the bias). This process is especially important for hydrological
parameters, since the imputed data might be further used for modeling and any introduced
bias before the modelling process could result in unacceptable or unrealistic results. Because
the imputed data would be utilized for further analysis, this study considers ±10% or
lower as the allowable bias for imputation.

It should be noted that, because the streamflow dataset from the Zhidan watershed
are actual observed field data with missing data whose exact values are unknown, the
imputation accuracy statistics mentioned above cannot be applied because there is no
complete dataset to compare the imputation algorithms to. Therefore, other metrics apart
from prediction error statistics are required to observe the efficacy of the various imputation
methods to reconstruct the missing data.

Therefore, in this study, metrics such as the mean, standard deviation, variances of
the complete, transformed, and imputed values of the Maduwang dataset were addi-
tionally calculated and compared. This was performed to determine which imputation
algorithm best fits the real-world field dataset (Zhidan catchment) whose missing values
are unknown.

The research block diagram is illustrated in Figure 2 for easy clarification of the
research design process implemented in this work.
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3. Results
3.1. EDA Results

The plot of the daily streamflow of the Zhidan watershed showing the missing data
portions in red is presented in Figure 2. A look at the streamflow dataset of the Zhidan
watershed demonstrated that the missing data areas were concentrated in January to March
and November to December of the years 2003 to 2005. These are represented in Figure 3.
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The results of the descriptive statistics, normality and MCAR test results of Zhidan
catchment data are further displayed in Table 3 and Figure S1.

Table 3. Descriptive statistics, Normality and MCAR test results of Zhidan catchment data.

Descriptive Statistics

Observed (ZOBS) Missing (ZMIS) Total

N % N Percent (%) N %

3606 89.7% 412 10.3% 4018 100.0%

Mean (SE) Std. Dev. Minimum Maximum Skewness Kurtosis

0.523 (0.032) 1.906 0.023 67.40 18.836 510.412

Test of Normality

Kolmogorov-Smirnov a Shapiro-Wilk

Statistic df Sig Statistic df Sig.

0.397 3606 0.000 0.153 3606 0.000

Little’s MCAR Test

Chi-Square df Sig.

50.239 1 0.000
N denotes number of counts of the Zhidan data time series obtained. SE denotes standard error. a denotes
Lilliefors Significance Correction.

In Table 3, the analysis of the missing data in the Zhidan streamflow time series
dataset showed 412 missing values out of 4018 total values (equivalent to a percentage
of approximately 10.3% missingness), exceeding the critical missingness threshold of 5%,
and therefore conventional methods of data infilling such as averaging and interpola-
tion are not recommended. We also assessed convergence by reporting the means and
standard deviation.

In addition, the skewness and kurtosis results from Table 3, showed that the data is
largely positively skewed with a large kurtosis proving its non-normality. The data also
series satisfies the non-normality assumption from results of the Kolmogorov–Smirnov test
(p = 0.0) and the Shapiro–Wilk test (p = 0.0) (Table 3) respectively.

Figure S1 also presents the non-normality of the Zhidan dataset by showing a highly
positively skewed distribution, suggesting that missing data schemes which do not assume
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normal distribution would obtain better results. The results of Little’s test on the Zhidan
dataset are also depicted in Table 3, where the significance value is less than 0.05 and we
can conclude that the data are not missing completely at random but might be MAR or
MNAR instead.

Tables 4 and 5 present the descriptive statistics and normality test while Figure S2
illustrates the distribution for the complete and transformed Maduwang dataset respectively.

Table 4. Descriptive statistics and Normality test results of the complete Maduwang catchment data.

Observed (MOBS) Missing (MMIS) Total

N % N Percent (%) N %

4018 100% 0 0% 4018 100.0%

Mean (SE) Std. Dev. Minimum Maximum Skewness Kurtosis

12.557 (0.462) 29.310 0.22 575.00 8.543 101.410

Test of Normality

Kolmogorov-Smirnov a Shapiro-Wilk

Statistic df Sig Statistic df Sig.

0.337 4018 0.000 0.316 4018 0.000
N denotes number of counts of the Maduwang data time series obtained. SE denotes standard error. a denotes
Lilliefors Significance Correction.

Table 5. Descriptive statistics and Normality test results of the transformed Maduwang catch-
ment data.

Observed (ZOBS) Missing (ZMIS) Total

N % N Percent (%) N %

3606 89.7% 412 10.3% 4018 100.0%

Mean (SE) Std. Dev. Minimum Maximum Skewness Kurtosis

13.161(0.514) 30.857 0.22 575.00 8.102 91.096

Test of Normality

Kolmogorov-Smirnov a Shapiro-Wilk

Statistic df Sig Statistic df Sig.

0.337 3606 0.000 0.328 3606 0.000
N denotes number of counts of the Maduwang data time series obtained. SE denote standard error. a. Lilliefors
Significance Correction.

Tables 4 and 5 show that some variation occurs in the data when the complete
Maduwang dataset is transformed to contain missing data as seen in the differences
in mean, standard deviation, skewness, and kurtosis. However, we noticed that the
non-normal distribution of the dataset remains intact as perceived from the significance
values of the normality tests (Kolmogorov–Smirnov test (p = 0.0) and the Shapiro–Wilk test
(p = 0.0)). This observation is also confirmed in Figure S2, where we see both the complete
and transformed Maduwang dataset having the same distribution.

Comparing Figure S1 to Figure S2, which means comparing the distribution of the
Zhidan dataset to the Maduwang dataset, shows that both are highly positively skewed
having the same distribution, therefore, eliminating the issue of data distribution bias in
comparing the missing data reconstruction methods in this particular study.

The plot of the average monthly streamflow of the Zhidan dataset and the complete
Maduwang dataset is also illustrated in Figure 4. This plot was performed to have a rough
view of the seasonality of the data in the watershed and to be able to assess the efficiency of
the imputation algorithms applied in this study by gaining knowledge and understanding
the characteristics of the datasets based on the characteristics of the watersheds.
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In statistics, adding a data point above the mean, or removing a data point below the
mean, increases the mean. Similarly, removing a data point above the mean, or adding a
data point below the mean, decreases it. In light of this, observing Figure 4b, it can be seen
that the general average monthly streamflow values of January to March and November to
December (even in the years of 2003 to 2005) are below the overall mean of the Maduwang
dataset (which is 12.56 as shown in Table 4).

Removing the data points below the mean during the transformation process increases
the newly obtained mean. This can be observed in the mean of the transformed Maduwang
dataset (seen as 13.16 in Table 5), and using the past and future data characteristics of
the Zhidan dataset, the same pattern is seen of the average monthly streamflow values of
January to March and November to December.

We can safely conclude that the mean of the Zhidan dataset with missing values is
an increased mean resulting from having some data points below the overall mean of the
dataset missing. Although the data points of January to March and November to December
are mostly below the mean of the datasets of both watersheds, their spread is closer to the
mean than for the data points of the wetter seasons (typically July to October). Removing
these data points in the transformation process (in the case of the Maduwang dataset) or
having them missing (in the case of the Zhidan watershed) increases the spread of the data
points and therefore increases the standard deviation.
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This can be observed by comparing the standard deviations of the complete Maduwang
dataset (Table 4) and the transformed Maduwang dataset (Table 5). This knowledge greatly
influenced the choice of missing data imputation algorithms envisioned to be the best for
filling the missing streamflow values for the watershed.

Figure S3 represents the decomposed time series of the complete and transformed
Maduwang dataset. Figure S3b shows a pre-imputed decomposition of the transformed
Maduwang dataset (imputed regions shown in red) performed automatically by the stlplus
package by filling the series gap with the nearest neighbors [32] in its attempt to handle the
missing data to produce the time series decomposition.

The differences in the decomposed complete and transformed Maduwang dataset are
most noticeable in the trend plot, which shows the areas of pre-imputed data in the trend
decomposition forming straight lines (Figure S3b) instead of the more curved nature of the
complete dataset (Figure S3a). This means that imputation methods can also be compared
in this way to ascertain their accuracy in mimicking the trend of the complete dataset. The
Maduwang dataset is seen to possess both seasonality and trend. The trend is somewhat
increasing although not pronounced.

Figure S4 presents the autocorrelation results of the complete and transformed Maduwang
dataset. By default, the acf function in R does not allow for missing values, and therefore
when the na.action = na.pass function is used, the covariances are computed from the
complete cases [83], that is, list-wise deletion.

From Figure S4, the autocorrelation of the complete and transformed Maduwang
dataset are the same. However, this in no way implies that it would be the same in all
cases when the acf function is used with missing data. This is because the results from the
acf function depend completely on the observed data without any pre-imputation, and
therefore the results might be biased if the missing data proportion is fairly large or if the
covariance after dealing with the missing data do not reflect the actual autocorrelation of the
data without missing data. The Maduwang dataset shows a strong positive autocorrelation.

Figure S5 displays the decomposed time series and autocorrelation results of the
Zhidan watershed. The stlplus package pre-imputed the series gap (shown in red), and the
acf function applied complete case analysis to deal with the missing data.

The decomposed time series of the Zhidan dataset shows seasonality and a very distinct
decreasing trend. We also observed a positive autocorrelation in the data with more statisti-
cally significant autocorrelation and some minor statistically insignificant autocorrelation.

3.2. Imputation Results

The imputation accuracy statistics of the different missing data reconstruction algo-
rithms applied in this study are presented in Table 6.

In terms of time and computational power consumption, the structural time series
method of the Kalman smoothing algorithm and the Kalman method of the seasonally
decomposed algorithm were slow and computationally intensive. All other algorithms,
especially the multiple imputation mechanisms, converge quickly without much strain on
the computing system.

The results of the imputation accuracy statistics in Table 6 demonstrate quite low
RMSE for all the applied algorithms across the total error measurement (TEM) and the
localized error measurement (LEM). This is shown because the RSR values for all the
measured statistics are less than 0.7, as recommended by Moriasi et al. [78], with the
highest obtained RSR values in this study being approximately 0.4.

Considering the imputeTS results, the structural time series method of the Kalman
smoothing algorithm outperformed the ARIMA state-space representation method of the
same algorithm in all the measured error metrics, with the most notable being the PBIAS
statistic where the structural time series method presented no bias (0%) with the TEM
and a 0.1% overestimation with the LEM, whereas the ARIMA state-space representation
method showed underestimating the missing values with both error measurements (3.6%
with TEM and 9.7% with LEM).
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Table 6. Imputation accuracy statistics of the different missing data reconstruction algorithms.

Total Error Measurement (TEM) Localized Error Measurement (LEM)

Imputation
Method Method RMSE

(m3/s) RSR MAE
(m3/s) PBIAS RMSE

(m3/s) RSR MAE
(m3/s) PBIAS (%)

imputeTS

na_kalman
StructTS 0.541 0.018 0.089 0 1.036 0.025 0.326 0.1

auto.arima 1.690 0.058 0.458 −3.6 3.237 0.079 1.680 −9.7

na_seadec
interpolation 0.465 0.016 0.081 −0.1 0.890 0.022 0.298 −0.3

kalman 0.575 0.020 0.095 0 1.100 0.027 0.347 0

na_seasplit
interpolation 1.690 0.058 0.407 −2.6 3.237 0.079 1.494 −6.9

kalman 1.655 0.056 0.401 −2.8 3.170 0.077 1.471 −7.5

SPSS

EM 2.126 0.073 0.623 4.5 4.071 0.099 2.283 12

Monotone
LR 7.827 0.267 2.280 18.1 14.986 0.364 8.357 48.2

PMM 0.537 0.018 0.095 −0.1 1.028 0.025 0.347 −0.2

mice

FCS or MICE

PMM 5.172 0.176 0.616 2.8 9.902 0.241 2.257 7.5

BLR 8.352 0.285 1.946 12 15.991 0.389 7.134 31.9

RF 1.727 0.059 0.227 0.3 3.307 0.080 0.834 0.9

Amelia

EMB

Time as explicit 8.056 0.275 2.362 18.8 15.425 0.375 8.658 50

Lags and leads 7.185 0.245 2.057 16.3 13.757 0.334 7.543 43.5

ts and polytime 7.830 0.267 2.300 18.3 14.993 0.364 8.431 48.8

The interpolation method of the seasonally decomposed algorithm outperformed the
Kalman method of the same algorithm in the RMSE (and so RSR) and MAE error metrics.
However, the Kalman method demonstrated no bias at all in estimating the missing values,
whereas the interpolation method presented minimal underestimation of the missing
values across both error measurements (0.1% with TEM and 0.3% with LEM).

The opposite effect occurred in the application of the seasonally splitted algorithm.
The Kalman method outperforms the interpolation method in the RMSE (and so RSR)
and MAE error metrics, but the interpolation method shows less percentage bias in the
estimation of the missing values across both the TEM and LEM, although both methods
underestimate the missing values.

Another observation was made of the imputeTS algorithms in Table 6 where, re-
gardless of the better performance of interpolation method of the seasonally decomposed
algorithm in the RMSE, RSR, and MAE than all the other imputeTS algorithms, its percent-
age bias is worse than that of the structural time series method of the Kalman smoothing
algorithm and the Kalman method of the seasonally decomposed algorithm across both
the TEM and LEM.

Moreover, while the ARIMA state-space representation method of the Kalman smooth-
ing algorithm and the interpolation method of the seasonally splitted algorithm have the
same RMSE and RSR values, the latter performs better in the MAE and PBIAS error metrics
across both error measurements. Therefore, a general overview of the performance of
the imputeTS package algorithms shows the seasonally decomposed algorithm with the
interpolation method having the best RMSE, RSR, and MAE results, while the seasonally
decomposed algorithm with the Kalman method exhibiting the best bias results across
both the TEM and LEM.

The results obtained from the application of the SPSS software show the PMM method
of the Monotone multiple imputation mechanism performing the best among all the other
schemes both in the TEM and LEM, with some minor underestimation bias (0.1% with TEM
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and 0.2% with LEM). The EM imputation algorithm follows having satisfactory results
across all the error statistics in the TEM and LEM. Still, it obtained a 12% overestimation
bias with the LEM, above the allowed bias in this study. The LR method of the Monotone
multiple imputation mechanism was noted to struggle with obtaining low bias in both the
TEM and LEM albeit the satisfactory scores in RMSE, RSR, and MAE metrics.

The RF method of the MICE algorithm generated the best results among all the applied
MICE multiple imputation mechanisms with some slight overestimation bias of 0.3% with
the TEM and 0.9% with the LEM, followed by the PMM method, which similarly produced
acceptable RMSE, RSR, and MAE results but obtained overestimation biases of 2.8% with
the TEM and 7.5% with the LEM.

The BLR method of the MICE multiple imputation algorithm also achieved satisfactory
RMSE, RSR, and MAE results but resulted in high overestimating of the bias with both
error measurements, especially with the LEM, where we observe a 31.9% overestimation of
the missing values.

Amelia offers the EMB multiple imputation method. All of the applied methods are
observed to generate acceptable RMSE, RSR, and MAE results with both the TEM and
LEM, with the lags and leads method having the best results among the EMB methods.
However, we note that all of the methods result in significant overestimation of the missing
values across both the TEM and LEM, with the Time as explicit obtaining as high as a 50%
overestimation of the missing values and with the LEM far above the allowable 10% bias
in this study.

A comparison of all the results in Table 6 indicates overestimation bias with almost all
of the multiple imputation algorithms and underestimation bias with the single imputa-
tion mechanisms.

The exceptions are the PMM method of the Monotone multiple imputation mechanism
implemented in SPSS which produced underestimation of the missing values, and the EM
algorithm, also performed in the SPSS software, which resulted in overestimation of the
missing values, although it is not a multiple imputation method. The RMSE and MAE
values more than doubled to almost tripling in the percentage bias statistics from the TEM
to the LEM. Table 6 further demonstrates the differences in the results generated by each
algorithm and method used.

For example:

1. The PMM method of the Monotone multiple imputation mechanism in SPSS sur-
passed the PMM method of the MICE algorithm in all of the error metrics across the
TEM and the LEM. However, both use the same predictive mean matching method
of missing data imputation, with the Monotone PMM in SPSS underestimating the
missing values. At the same time, the PMM of MICE overestimates the missing values.

2. Although the interpolation method of the seasonally decomposed algorithm outper-
forms all of the applied methods in RMSE, RSR, and MAE, it is overtaken in terms of
the bias by the Kalman method of the same algorithm, the structural time series of the
Kalman smoothing algorithm across both the TEM and LEM, and the PMM method
of the Monotone multiple imputation mechanism in SPSS with the LEM while having
the same underestimation bias with the TEM.

3. The PMM method of the Monotone multiple imputation mechanism in SPSS, although
having a better RMSE value, possesses the same RSR value and is outdone in MAE
and percentage bias across the TEM and LEM by the structural time series of the
Kalman smoothing algorithm.

4. Similarly, the PMM method of the Monotone multiple imputation mechanism in
SPSS, although having better RMSE and RSR values than the Kalman method of the
seasonally decomposed algorithm, shows the same MAE value and is outdone in the
estimation percentage bias by the latter method across both the TEM and LEM.

5. The RF method of the MICE algorithm overtakes the ARIMA state-space representa-
tion method of the Kalman smoothing algorithm, all of the methods of the seasonally
splitted algorithm in MAE and bias results across all of the measurements regardless
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of its worse RMSE and RSR results, and overestimates the missing values, while the
others underestimate the missing values.

6. The PMM method of the MICE algorithm and the Kalman method of the seasonally
splitted algorithm possess similar and opposite bias estimation of the missing values,
with the PMM overestimating while the Kalman underestimates, although the Kalman
method displays better RMSE, RSR, and MAE results.

7. The BLR method of the MICE algorithm also outperforms the LR method of the
Monotone multiple imputation mechanism in SPSS and all of the methods of the EMB
algorithm in MAE and percentage bias across both the TEM and LEM, although the
LR method and the EMB algorithms display better RMSE and RSR values.

The additional statistical metrics for the comparison of imputation algorithms are
presented in Tables 7 and 8.

For the statistical metrics of comparison of the imputation algorithms for the Maduwang
dataset shown in Table 7, it is easier to detect the algorithms that performed satisfactorily
in terms of the means and standard deviations. We note that the Kalman method of the
seasonally decomposed algorithm possesses the same mean and standard deviation as
the complete dataset, but with differences in their variance. This is because, although the
spread of the values from the mean are similar, the values themselves are not the same.

One is the complete dataset of the Maduwang watershed and the other contains
imputed missing values. The structural time series method of the Kalman smoothing
algorithm has a higher mean but a lower standard deviation than the complete dataset.

Table 7. Statistical metrics for comparison of imputation algorithms for the Maduwang dataset.

Data N Mean Std. Dev. Variance

Complete 4018 12.557 29.310 859.096

Transformed 3606 13.161 30.857 952.128

na_kalman
StructTS 4018 12.560 29.309 858.993

auto.arima 4018 12.099 29.409 864.899

na_seadec
interpolation 4018 12.544 29.310 859.104

kalman 4018 12.557 29.310 859.047

na_seasplit
interpolation 4017 12.232 29.368 862.486

kalman 4017 12.205 29.374 862.827

EM 4018 13.121 29.232 854.497

Monotone
LR 4018 14.830 29.793 887.619

PMM 4018 12.548 29.312 859.197

FCS or MICE

PMM 4018 12.910 29.712 882.828

BLR 4018 14.060 30.144 908.644

RF 4018 12.594 29.341 860.913

EMB

Time as explicit 4018 14.915 29.841 890.514

Lags and leads 4018 14.607 29.700 882.105

ts and polytime 4018 14.856 29.802 888.174
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Table 8. Statistical metrics for comparison of imputation algorithms for the Zhidan dataset.

Data N Mean Std. Dev. Variance

Original dataset 3606 0.523 1.907 3.635

na_kalman
StructTS 4018 0.513 1.807 3.266

auto.arima 4018 0.512 1.809 3.272

na_seadec
interpolation 4018 0.514 1.810 3.276

kalman 4018 0.515 1.808 3.270

na_seasplit
interpolation 4017 0.507 1.809 3.271

kalman 4017 0.506 1.808 3.269

EM 4018 0.530 1.806 3.263

Monotone
LR 4018 0.653 1.855 3.442

PMM 4018 0.513 1.810 3.276

FCS or MICE

PMM 4018 0.527 1.839 3.383

BLR 4018 0.593 1.862 3.469

RF 4018 0.511 1.810 3.275

EMB

Time as explicit 4018 0.643 1.849 3.419

Lags and leads 4018 0.636 1.845 3.404

ts and polytime 4018 0.652 1.854 3.438

The interpolation method of the seasonally decomposed algorithm has the same
standard deviation as the complete dataset, albeit it has a lower mean than the complete
dataset. However, the PMM method of the Monotone multiple imputation mechanism
in SPSS was observed to have a greater standard deviation than the complete dataset,
although it has a lower mean.

The RF method of the MICE algorithm is viewed to have a higher mean and standard
deviation than the complete dataset. The differences in the means of the above-mentioned
algorithms and methods to the complete Maduwang dataset can be considered insignifi-
cant. The ARIMA state-space representation method of the Kalman smoothing algorithm
has a higher standard deviation than the complete dataset although it also has a lower
mean, and the PMM method of the MICE algorithm is seen to have a greater mean and
standard deviation that the complete dataset. The differences in the means, however, of
the ARIMA state-space representation method of the Kalman smoothing algorithm and
the PMM method of the MICE algorithm with the complete dataset could be argued to be
slightly significant.

The EM algorithm in SPSS produced a mean greater than the complete dataset but
less than the mean of the transformed dataset and a standard deviation lower than both
complete and transformed datasets.

A thorough inspection of the imputed missing value results of the EM algorithm
showed that they were filled with values similar or near to the mean of the complete
and transformed dataset and thus this is the reason for the smaller standard deviation
than both the complete and transformed datasets. The LR method of the Monotone
multiple imputation mechanism in SPSS, the BLR method of the MICE algorithm, and
all of the methods of the EMB algorithm produced higher means than both the complete
and transformed datasets. These algorithms generated higher means than the transformed
Maduwang dataset when the expectation was to achieve the opposite, due to the data
characteristics. Although below that of the transformed dataset, their standard deviations
cannot be considered at this point because of the significant disparity in their means
in comparison to the transformed dataset. Thus, the differences in the means of these
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algorithms in addition to the EM algorithm with the complete dataset are considered
highly significant.

Table 8 shows that all of the methods of the seasonally splitted algorithm did not
impute one missing value. This caused their means to be slightly significantly below the
mean of the complete dataset. The cause of this discrepancy is uncertain, and further work
could be conducted to ascertain the reasons for, and solutions to, this issue.

For the statistical metrics of the Zhidan dataset in Table 8, some inferences from statis-
tical knowledge, knowledge of the dataset characteristics in Figure 4, and the Maduwang
dataset in Table 7 were employed.

1. The mean of the original Zhidan dataset containing missing data is a greater mean
than the mean of the entire dataset without missing data. Therefore, the algorithms
which resulted in lower means than the original dataset provide better missing data
imputation methods for this real-world dataset.

2. The seasonally splitted algorithm did not impute one missing value also of the Zhidan
watershed in Table 8, similar to the case displayed in Table 7. Therefore, it can be
rightly assumed that the means produced by this algorithm would be below the actual
mean of the Zhidan dataset without missing values.

Therefore, with the Zhidan watershed, the range of the expected mean of the new
dataset without missing values was observed to between 0.507 and 0.523, and the missing
data imputations which produced such results could be considered good methods to fill in
the missing data of this real-world dataset.

It was noted that the Kalman smoothing, seasonally decomposed algorithms with all
their methods, the PMM method of the Monotone multiple imputation mechanism in SPSS,
and the RF method of the MICE algorithm fit these characteristics for the expected mean
The LR method of the Monotone multiple imputation in SPSS, PMM, and BLR methods of
the MICE algorithm and all of the methods of the EMB algorithm do not.

4. Discussion

The localized error measurement (LEM) showed a tripling of the imputation accuracy
error measurements compared to the total error measurement (TEM) imputation accuracy
of the different imputation algorithms employed in this study, because the LEM method
showed the actual differences in values between the imputed missing data and the complete
dataset, although the results of the TEM appeared to be accurate for most of the imputation
algorithms. This was an eye-opening observation, in that, in this case where there was about
10.3% of the data missing, we have the difference in the complete and transformed dataset
being about an 89.7% match in the application of the TEM, even in the face of different
imputed values, and therefore would expect an imputation accuracy corresponding to
this match. However, when we zoomed in to only 10.3% of the complete dataset and
the imputed dataset using the LEM, the variance between the complete dataset and the
imputed missing values was extremely highlighted, especially in terms of the bias of
estimation. Therefore, this LEM is recommended when the missing values are concentrated
at specific and easily differentiable portions of the dataset to be imputed.

The univariate missing value algorithms (Kalman smoothing, seasonally decomposed,
and seasonally splitted) performed satisfactorily because the datasets employed in this
study are typical univariate time series datasets, which is the main data which these
algorithms could cater to. Nevertheless, we observed that multiple imputation algorithms
such as the PMM method of both the Monotone multiple imputation in SPSS and MICE
algorithm and the RF method of the MICE algorithm, which are commonly accustomed to
multivariate data, performed as well as these univariate missing value algorithms and in
some cases better, especially with the bias, which shows that these multiple imputation
algorithms could be considered as highly sophisticated.

The predictive mean matching (PMM) method of both the Monotone multiple im-
putation in SPSS and MICE algorithm was noted to perform well because PMM utilizes
knowledge of the actual observed values surrounding the missing data to build the impu-
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tation model. And therefore, for data such as the ones utilized in this study, this process
greatly comes in handy in improving the imputation accuracy of the missing values.

The PMM method of the Monotone multiple imputation in SPSS outdid the PMM
method of the MICE algorithm, although both apply the same predictive mean matching
method of missing data imputation. This is because of the differences in the rendering of
the calculation of the multiply imputed values. The MICE algorithm is an iterative multiple
imputation algorithm [62], whereas the Monotone mechanism of SPSS is non-iterative [55].
The MICE algorithm generates the missing values by repeating the imputation sequences
using the Gibbs sampler for each imputation [57,62]. MICE applies five (5) iterations for
each of the five (5) imputations, while SPSS performs no iterations for each of the five (5)
imputations. This could mean that the more multifaceted algorithm is better adapted to
complex scenarios, such that simpler problems create some struggles. Therefore, because
the datasets in this study contained two variables, with one variable as date data, the
simpler imputation method performed best.

Similarly, the random forests (RF) method of the MICE algorithm also performed well
when the other MI methods struggled because the imputation model of the RF method is
slightly more complex than the others, in that random forests behave in a similar fashion to
neural networks, with the tree splitting and creation of nodes process, and thus its learning
of the data is also better, resulting in better imputation accuracy results.

The biased mean result obtained by the EM algorithm was because the algorithm fitted
the dataset to a normal distribution where the mean value of this distribution possesses
the highest probability density in the entire population.

The LR method of the Monotone multiple imputation in SPSS, the BLR method of the
MICE algorithm, and all of the methods of the EMB algorithm, even though they produced
acceptable RMSE, RSR, and MAE results, struggled with achieving better imputation
accuracy in terms of bias because of the randomness of their search for missing values
in the imputation models. Moreover, these algorithms even necessitated the addition of
bounds to their imputation models since they produced negative streamflow values.

Furthermore, thorough inspection of the imputed Zhidan and Maduwang missing
values by the LR method of the Monotone multiple imputation in SPSS, BLR method
of the MICE algorithm, and all of the methods of the EMB algorithm showed that the
variability in the imputed values of the Zhidan watershed was smaller than that of the
Maduwang watershed because of the smaller range of the Zhidan dataset. For example,
the Maduwang dataset has minimum and maximum streamflow values of 0.22 m3/s and
575 m3/s respectively (see Table 4), making the range of the data equal to 574.78 m3/s,
while the Zhidan dataset has minimum and maximum streamflow values of 0.023 m3/s
and 67.4 m3/s respectively (see Table 3), with a range of 67.38 m3/s. The imputation
algorithms that were given bounds for the imputation model, and therefore performed
better with smaller range because of the constraints in the degrees of freedom in obtaining
the missing values. In light of this observation, it can be perceived that the range and
bounds of the dataset also play a vital role in influencing imputation accuracy.

Moreover, by discerning the algorithms and methods whose means are insignificant
or slightly significant in Table 7 and comparing them to the imputation accuracy measures
of the Maduwang dataset in Table 6, it can be noticed that these algorithms performed
best among the implemented imputation methods with both the TEM and LEM, and were
also seen to fit the expected mean criteria of the Zhidan dataset (Table 8). Therefore, in the
case of real-world datasets such as the Zhidan dataset, these algorithms provide good and
efficient methods for missing value imputation.

The actual mean, standard deviation, and variance of the Zhidan streamflow dataset
are unknown and, therefore, to ascertain the best imputation algorithm applied requires
some additional effort. This is where knowledge of the climatic characteristics of the
catchment (the wet and dry periods) and the positions of the missing values are highly
significant. Also, some knowledge of the flood event periods in the watershed would be of
supplementary benefit. This knowledge allows the imputer to guess better the possible
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range of values of the missing data in order to choose the best missing data algorithm,
especially when the imputer is only applying the TEM for imputation accuracy. From the
Zhidan dataset, it was observed that the missing data was localized between January to
March and November to December of the years 2003 to 2005. These months represent
the driest periods of the catchment. There were also no flood events recorded in the
Zhidan watershed within these periods, and therefore the expectance of outliers is greatly
reduced. In this case, the missing value imputation algorithms that take the dataset’s
seasonality and/or the surrounding observed values of the missing data into consideration
would perform best, and the imputation methods that produce more random imputed
missing values would perform the worse. Therefore, it can be concluded that missing value
imputation of streamflow time series data or, more generally, hydroclimatic time series
data in the real-world do not solely depend on the imputation algorithms implemented
but also on extensive study of the particular dataset to be imputed.

5. Conclusions

This paper contributes to our understanding and highlights recent developments in
filling missing data, particularly in geographical areas that often suffer from inadequate
hydrological data by tackling questions such as: (1) can multiple imputation methods
be used with accuracy on univariate time series data and how do they compare with
univariate time series algorithms; and (2) how do we handle missing data in real-world
data and is imputation alone enough? Finally, the following conclusions were made from
the results and observations attained.

Univariate missing value algorithms are specially developed to handle univariate
time series data and provide satisfactory results depending on the time decomposition
characteristics of the data. However, the univariate missing value algorithms which provide
the best results are usually time and computationally intensive.

The time aspect of a time series dataset, especially a univariate time series, although
implicit, is a variable nonetheless. Therefore, even though these algorithms are accustomed
to multivariate data, multiple imputation algorithms which take the surrounding observed
values into consideration, like predictive mean matching (PMM), or which can understand
the characteristics of the data like random forests (RF) provide similar results to the
univariate missing data algorithms and in some cases perform better without the added
time and computational downsides when time is taken as an explicit variable.

The localized error measurement (LEM) recommended in this study would provide
deeper insights into the actual bias between the imputed missing values and the complete
dataset. This is especially useful when the missing data are concentrated at specific portions
of the dataset or when very large gaps of missingness occur.

In the case of the real-world Zhidan streamflow dataset, it was determined that to
ascertain the best imputation algorithm applied requires some additional knowledge of the
catchment characteristics such as climatic characteristics and flood event periods because of
outliers to make sure that the missing values are replaced with plausible values. Therefore,
proper handling of missing values of real-world streamflow or hydroclimatic datasets
depends on imputing and extensive study of the particular dataset to be imputed.

More work is required to investigate the details of the failure of the seasonally splitted
algorithm to impute one missing data value.

The proposed methodology implemented in this study necessitates further verification
with the application of several other datasets from different catchments to further expand
and improve the understanding of missing data imputation techniques.

In addition, much research is also needed on missing data imputation of real-world
datasets, necessitating the introduction and/or development of more metrics for finding the
efficiency of imputation algorithms in applying these datasets, because error measurements
such as RMSE, RSR, MAE, and PBIAS, among others, become inapplicable with real-world
data since they require complete data for comparison.
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Further research would include obtaining more hydrological parameters of the wa-
tersheds to explore the changes in performance accuracy of the multivariate missing data
imputation algorithms, especially in their handling of the time characteristics of hydrocli-
matic data.
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Maduwang dataset. Figure S5. Results of (a) time series decomposition and (b) autocorrelation of the
Zhidan dataset.
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